6 research outputs found

    Numerical Modeling in Civil and Mining Geotechnical Engineering

    Get PDF
    This Special Issue (SI) collects fourteen articles published by leading scholars of numerical modeling in civil and mining geotechnical engineering. There is a good balance in the number of published articles, with seven in civil engineering and seven in mining engineering. The software used in the numerical modeling of these article varies from numerical codes based on continuum mechanics to those based on distinct element methods or mesh-free methods. The studied materials vary from rock, soil, and backfill to tailings. The investigations vary from mechanical behavior to hydraulic and thermal responses of infrastructures varying from pile foundations to tailings dams and underground openings. The SI thus collected a diversity of articles, reflecting the state-of-the-art of numerical modeling applied in civil and mining geotechnical engineering

    Mining Safety and Sustainability I

    Get PDF
    Safety and sustainability are becoming ever bigger challenges for the mining industry with the increasing depth of mining. It is of great significance to reduce the disaster risk of mining accidents, enhance the safety of mining operations, and improve the efficiency and sustainability of development of mineral resource. This book provides a platform to present new research and recent advances in the safety and sustainability of mining. More specifically, Mining Safety and Sustainability presents recent theoretical and experimental studies with a focus on safety mining, green mining, intelligent mining and mines, sustainable development, risk management of mines, ecological restoration of mines, mining methods and technologies, and damage monitoring and prediction. It will be further helpful to provide theoretical support and technical support for guiding the normative, green, safe, and sustainable development of the mining industry

    Green Low-Carbon Technology for Metalliferous Minerals

    Get PDF
    Metalliferous minerals play a central role in the global economy. They will continue to provide the raw materials we need for industrial processes. Significant challenges will likely emerge if the climate-driven green and low-carbon development transition of metalliferous mineral exploitation is not managed responsibly and sustainably. Green low-carbon technology is vital to promote the development of metalliferous mineral resources shifting from extensive and destructive mining to clean and energy-saving mining in future decades. Global mining scientists and engineers have conducted a lot of research in related fields, such as green mining, ecological mining, energy-saving mining, and mining solid waste recycling, and have achieved a great deal of innovative progress and achievements. This Special Issue intends to collect the latest developments in the green low-carbon mining field, written by well-known researchers who have contributed to the innovation of new technologies, process optimization methods, or energy-saving techniques in metalliferous minerals development

    3-я Міжнародна конференція зі сталого майбутнього: екологічні, технологічні, соціальні та економічні аспекти (ICSF 2022) 24-27 травня 2022 року, м. Кривий Ріг, Україна

    Get PDF
    Матеріали 3-ої Міжнародної конференції зі сталого майбутнього: екологічні, технологічні, соціальні та економічні аспекти (ICSF 2022) 24-27 травня 2022 року, м. Кривий Ріг, Україна.Proceedings of the 3rd International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2022) 24-27 May 2022, Kryvyi Rih, Ukraine

    Control of Water Inrush from Longwall Floor Aquifers Using a Division Paste Backfilling Method

    No full text
    Aiming at the problem of the safety mining problems of longwall paste filling working face under buildings on high confined water in the Daizhuang Coal Mine, the paste filling mining method was used. A series of theoretical analyses, numerical simulations, and field measurements were applied. The results showed that when the filling interval of the working face increases from 1.2 m to 3.6 m, no significant change is found in the depth of the perforated plastic zone of the floor strata. According to the types of water-conducting cracks in the floor strata of the working face 11607, the floor strata are divided into the floor intact area, the structure developed area, and the floor weak area. Based on that, the measures for preventing and controlling the floor failure in the paste filling working face are proposed. Furthermore, the failure depth of the floor of the test working face was detected by the on-site water injection method, and the results showed that the maximum failure depth of the floor of the test working face was about 3 m.</jats:p

    Control of Water Inrush from Longwall Floor Aquifers Using a Division Paste Backfilling Method

    No full text
    Aiming at the problem of the safety mining problems of longwall paste filling working face under buildings on high confined water in the Daizhuang Coal Mine, the paste filling mining method was used. A series of theoretical analyses, numerical simulations, and field measurements were applied. The results showed that when the filling interval of the working face increases from 1.2 m to 3.6 m, no significant change is found in the depth of the perforated plastic zone of the floor strata. According to the types of water-conducting cracks in the floor strata of the working face 11607, the floor strata are divided into the floor intact area, the structure developed area, and the floor weak area. Based on that, the measures for preventing and controlling the floor failure in the paste filling working face are proposed. Furthermore, the failure depth of the floor of the test working face was detected by the on-site water injection method, and the results showed that the maximum failure depth of the floor of the test working face was about 3 m
    corecore