9,899 research outputs found

    Control of Probabilistic Systems under Dynamic, Partially Known Environments with Temporal Logic Specifications

    Get PDF
    We consider the synthesis of control policies for probabilistic systems, modeled by Markov decision processes, operating in partially known environments with temporal logic specifications. The environment is modeled by a set of Markov chains. Each Markov chain describes the behavior of the environment in each mode. The mode of the environment, however, is not known to the system. Two control objectives are considered: maximizing the expected probability and maximizing the worst-case probability that the system satisfies a given specification

    Control with Probabilistic Signal Temporal Logic

    Full text link
    Autonomous agents often operate in uncertain environments where their decisions are made based on beliefs over states of targets. We are interested in controller synthesis for complex tasks defined over belief spaces. Designing such controllers is challenging due to computational complexity and the lack of expressivity of existing specification languages. In this paper, we propose a probabilistic extension to signal temporal logic (STL) that expresses tasks over continuous belief spaces. We present an efficient synthesis algorithm to find a control input that maximises the probability of satisfying a given task. We validate our algorithm through simulations of an unmanned aerial vehicle deployed for surveillance and search missions.Comment: 7 pages, submitted to the 2016 American Control Conference (ACC 2016) on September, 30, 2015 (under review

    Control with probabilistic signal temporal logic

    Full text link
    Autonomous agents often operate in uncertain environments where their decisions are made based on beliefs over states of targets. We are interested in controller synthesis for complex tasks defined over belief spaces. Designing such controllers is challenging due to computational complexity and the lack of expressivity of existing specification languages. In this paper, we propose a probabilistic extension to signal temporal logic (STL) that expresses tasks over continuous belief spaces. We present an efficient synthesis algorithm to find a control input that maximises the probability of satisfying a given task. We validate our algorithm through simulations of an unmanned aerial vehicle deployed for surveillance and search missions

    Qualitative Analysis of POMDPs with Temporal Logic Specifications for Robotics Applications

    Get PDF
    We consider partially observable Markov decision processes (POMDPs), that are a standard framework for robotics applications to model uncertainties present in the real world, with temporal logic specifications. All temporal logic specifications in linear-time temporal logic (LTL) can be expressed as parity objectives. We study the qualitative analysis problem for POMDPs with parity objectives that asks whether there is a controller (policy) to ensure that the objective holds with probability 1 (almost-surely). While the qualitative analysis of POMDPs with parity objectives is undecidable, recent results show that when restricted to finite-memory policies the problem is EXPTIME-complete. While the problem is intractable in theory, we present a practical approach to solve the qualitative analysis problem. We designed several heuristics to deal with the exponential complexity, and have used our implementation on a number of well-known POMDP examples for robotics applications. Our results provide the first practical approach to solve the qualitative analysis of robot motion planning with LTL properties in the presence of uncertainty

    Toward Specification-Guided Active Mars Exploration for Cooperative Robot Teams

    Get PDF
    As a step towards achieving autonomy in space exploration missions, we consider a cooperative robotics system consisting of a copter and a rover. The goal of the copter is to explore an unknown environment so as to maximize knowledge about a science mission expressed in linear temporal logic that is to be executed by the rover. We model environmental uncertainty as a belief space Markov decision process and formulate the problem as a two-step stochastic dynamic program that we solve in a way that leverages the decomposed nature of the overall system. We demonstrate in simulations that the robot team makes intelligent decisions in the face of uncertainty

    Formal methods for motion planning and control in dynamic and partially known environments

    Full text link
    This thesis is motivated by time and safety critical applications involving the use of autonomous vehicles to accomplish complex tasks in dynamic and partially known environments. We use temporal logic to formally express such complex tasks. Temporal logic specifications generalize the classical notions of stability and reachability widely studied within the control and hybrid systems communities. Given a model describing the motion of a robotic system in an environment and a formal task specification, the aim is to automatically synthesize a control policy that guarantees the satisfaction of the specification. This thesis presents novel control synthesis algorithms to tackle the problem of motion planning from temporal logic specifications in uncertain environments. For each one of the planning and control synthesis problems addressed in this dissertation, the proposed algorithms are implemented, evaluated, and validated thought experiments and/or simulations. The first part of this thesis focuses on a mobile robot whose success is measured by the completion of temporal logic tasks within a given period of time. In addition to such time constraints, the planning algorithm must also deal with the uncertainty that arises from the changes in the robot's workspace during task execution. In particular, we consider a robot deployed in a partitioned environment subjected to structural changes such as doors that can open and close. The motion of the robot is modeled as a continuous time Markov decision process and the robot's mission is expressed as a Continuous Stochastic Logic (CSL) formula. A complete framework to find a control strategy that satisfies a specification given as a CSL formula is introduced. The second part of this thesis addresses the synthesis of controllers that guarantee the satisfaction of a task specification expressed as a syntactically co-safe Linear Temporal Logic (scLTL) formula. In this case, uncertainty is characterized by the partial knowledge of the robot's environment. Two scenarios are considered. First, a distributed team of robots required to satisfy the specification over a set of service requests occurring at the vertices of a known graph representing the environment is examined. Second, a single agent motion planning problem from the specification over a set of properties known to be satised at the vertices of the known graph environment is studied. In both cases, we exploit the existence of o-the-shelf model checking and runtime verification tools, the efficiency of graph search algorithms, and the efficacy of exploration techniques to solve the motion planning problem constrained by the absence of complete information about the environment. The final part of this thesis extends uncertainty beyond the absence of a complete knowledge of the environment described above by considering a robot equipped with a noisy sensing system. In particular, the robot is tasked with satisfying a scLTL specification over a set of regions of interest known to be present in the environment. In such a case, although the robot is able to measure the properties characterizing such regions of interest, precisely determining the identity of these regions is not feasible. A mixed observability Markov decision process is used to represent the robot's actuation and sensing models. The control synthesis problem from scLTL formulas is then formulated as a maximum probability reachability problem on this model. The integration of dynamic programming, formal methods, and frontier-based exploration tools allow us to derive an algorithm to solve such a reachability problem

    Technical Report: Distribution Temporal Logic: Combining Correctness with Quality of Estimation

    Full text link
    We present a new temporal logic called Distribution Temporal Logic (DTL) defined over predicates of belief states and hidden states of partially observable systems. DTL can express properties involving uncertainty and likelihood that cannot be described by existing logics. A co-safe formulation of DTL is defined and algorithmic procedures are given for monitoring executions of a partially observable Markov decision process with respect to such formulae. A simulation case study of a rescue robotics application outlines our approach.Comment: More expanded version of "Distribution Temporal Logic: Combining Correctness with Quality of Estimation" to appear in IEEE CDC 201
    • …
    corecore