1,034,299 research outputs found
Control Barrier Function Based Quadratic Programs for Safety Critical Systems
Safety critical systems involve the tight coupling between potentially
conflicting control objectives and safety constraints. As a means of creating a
formal framework for controlling systems of this form, and with a view toward
automotive applications, this paper develops a methodology that allows safety
conditions -- expressed as control barrier functions -- to be unified with
performance objectives -- expressed as control Lyapunov functions -- in the
context of real-time optimization-based controllers. Safety conditions are
specified in terms of forward invariance of a set, and are verified via two
novel generalizations of barrier functions; in each case, the existence of a
barrier function satisfying Lyapunov-like conditions implies forward invariance
of the set, and the relationship between these two classes of barrier functions
is characterized. In addition, each of these formulations yields a notion of
control barrier function (CBF), providing inequality constraints in the control
input that, when satisfied, again imply forward invariance of the set. Through
these constructions, CBFs can naturally be unified with control Lyapunov
functions (CLFs) in the context of a quadratic program (QP); this allows for
the achievement of control objectives (represented by CLFs) subject to
conditions on the admissible states of the system (represented by CBFs). The
mediation of safety and performance through a QP is demonstrated on adaptive
cruise control and lane keeping, two automotive control problems that present
both safety and performance considerations coupled with actuator bounds
Distributed Collision-Free Motion Coordination on a Sphere: A Conic Control Barrier Function Approach
This letter studies a distributed collision avoidance control problem for a group of rigid bodies on a sphere. A rigid body network, consisting of multiple rigid bodies constrained to a spherical surface and an interconnection topology, is first formulated. In this formulation, it is shown that motion coordination on a sphere is equivalent to attitude coordination on the 3-dimensional Special Orthogonal group. Then, an angle-based control barrier function that can handle a geodesic distance constraint on a spherical surface is presented. The proposed control barrier function is then extended to a relative motion case and applied to a collision avoidance problem for a rigid body network operating on a sphere. Each rigid body chooses its control input by solving a distributed optimization problem to achieve a nominal distributed motion coordination strategy while satisfying constraints for collision avoidance. The proposed collision-free motion coordination law is validated via simulation
Recommended from our members
A Simulated Microgravity Environment Causes a Sustained Defect in Epithelial Barrier Function.
Intestinal epithelial cell (IEC) junctions constitute a robust barrier to invasion by viruses, bacteria and exposure to ingested agents. Previous studies showed that microgravity compromises the human immune system and increases enteropathogen virulence. However, the effects of microgravity on epithelial barrier function are poorly understood. The aims of this study were to identify if simulated microgravity alters intestinal epithelial barrier function (permeability), and susceptibility to barrier-disrupting agents. IECs (HT-29.cl19a) were cultured on microcarrier beads in simulated microgravity using a rotating wall vessel (RWV) for 18 days prior to seeding on semipermeable supports to measure ion flux (transepithelial electrical resistance (TER)) and FITC-dextran (FD4) permeability over 14 days. RWV cells showed delayed apical junction localization of the tight junction proteins, occludin and ZO-1. The alcohol metabolite, acetaldehyde, significantly decreased TER and reduced junctional ZO-1 localization, while increasing FD4 permeability in RWV cells compared with static, motion and flask control cells. In conclusion, simulated microgravity induced an underlying and sustained susceptibility to epithelial barrier disruption upon removal from the microgravity environment. This has implications for gastrointestinal homeostasis of astronauts in space, as well as their capability to withstand the effects of agents that compromise intestinal epithelial barrier function following return to Earth
Unusual magnetoresistance in a topological insulator with a single ferromagnetic barrier
Tunneling surface current through a thin ferromagnetic barrier in a
three-dimensional topological insulator is shown to possess an extraordinary
response to the orientation of barrier magnetization. In contrast to
conventional magnetoresistance devices that are sensitive to the relative
alignment of two magnetic layers, a drastic change in the transmission current
is achieved by a single layer when its magnetization rotates by 90 degrees.
Numerical estimations predict a giant magnetoresistance as large as 800 % at
room temperature and the proximate exchange interaction of 40 meV in the
barrier. When coupled with electrical control of magnetization direction, this
phenomenon may be used to enhance the gating function with potentially sharp
turn-on/off for low power applications
Input-to-State Safety With Control Barrier Functions
This letter presents a new notion of input-to-state safe control barrier
functions (ISSf-CBFs), which ensure safety of nonlinear dynamical systems under
input disturbances. Similar to how safety conditions are specified in terms of
forward invariance of a set, input-to-state safety (ISSf) conditions are
specified in terms of forward invariance of a slightly larger set. In this
context, invariance of the larger set implies that the states stay either
inside or very close to the smaller safe set; and this closeness is bounded by
the magnitude of the disturbances. The main contribution of the letter is the
methodology used for obtaining a valid ISSf-CBF, given a control barrier
function (CBF). The associated universal control law will also be provided.
Towards the end, we will study unified quadratic programs (QPs) that combine
control Lyapunov functions (CLFs) and ISSf-CBFs in order to obtain a single
control law that ensures both safety and stability in systems with input
disturbances.Comment: 7 pages, 7 figures; Final submitted versio
- …
