2,684,047 research outputs found

    Ground-state Stabilization of Open Quantum Systems by Dissipation

    Full text link
    Control by dissipation, or environment engineering, constitutes an important methodology within quantum coherent control which was proposed to improve the robustness and scalability of quantum control systems. The system-environment coupling, often considered to be detrimental to quantum coherence, also provides the means to steer the system to desired states. This paper aims to develop the theory for engineering of the dissipation, based on a ground-state Lyapunov stability analysis of open quantum systems via a Heisenberg-picture approach. Algebraic conditions concerning the ground-state stability and scalability of quantum systems are obtained. In particular, Lyapunov stability conditions expressed as operator inequalities allow a purely algebraic treatment of the environment engineering problem, which facilitates the integration of quantum components into a large-scale quantum system and draws an explicit connection to the classical theory of vector Lyapunov functions and decomposition-aggregation methods for control of complex systems. The implications of the results in relation to dissipative quantum computing and state engineering are also discussed in this paper.Comment: 18 pages, to appear in Automatic

    V-Model Role Engineering

    Get PDF
    The paper focuses on role engineering which is an important topic in the development of access control system, particularly when considering Role Based Access Control – RBAC models. Despite the wide use of RBAC in various applications, the role engineering process is not a standardized approach. The paper aims to define a methodology and a process model for role engineeringInformation security, access control systems, role based access control systems – RBAC, engineering methodologies, security policies, access control models

    Agent Based Approaches to Engineering Autonomous Space Software

    Full text link
    Current approaches to the engineering of space software such as satellite control systems are based around the development of feedback controllers using packages such as MatLab's Simulink toolbox. These provide powerful tools for engineering real time systems that adapt to changes in the environment but are limited when the controller itself needs to be adapted. We are investigating ways in which ideas from temporal logics and agent programming can be integrated with the use of such control systems to provide a more powerful layer of autonomous decision making. This paper will discuss our initial approaches to the engineering of such systems.Comment: 3 pages, 1 Figure, Formal Methods in Aerospac

    Embedded Software Design for Mechatronic Systems

    Get PDF
    This research project is motivated by the fact that nowadays it is impossible to separate control engineering from software engineering. Besides that both of them can be found in definitions of mechatronics, this project deals with exploitation and improvement of their strong natural interdependency. In all modern reactive systems, what all mechatronics systems are, one will always find one or more embedded computers. The functionality of these computers, and in turn controlled systems, is powered by embedded software [1]

    Collaborative Verification-Driven Engineering of Hybrid Systems

    Full text link
    Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e.g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) graphical (UML) and textual modeling of hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks

    Mathematical techniques for estimating operational readiness of complex systems

    Get PDF
    Development of methods for predicting operational readiness of complex systems based on probability theory is discussed. Operational readiness of systems is defined and mathematical relationships involved in determining readiness are presented. Example of reliability engineering and quality control is included

    Management and control of self-replicating systems: A systems model

    Get PDF
    In 1980, a conceptual engineering approach to self-replicating systems was achieved. The design was based on von Newmann's kinematic version of self-replicating automata. The systems management and control and the organization of the control elements are reported. After developing the functional requirements of such a system, a hierarchy of three management and control levels is described. These are an autonomous, an external, and an intelligent management and control system. Systems recycling, systems specialization, and information replication are discussed

    Integrated Design and Implementation of Embedded Control Systems with Scilab

    Get PDF
    Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly time-consuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.Comment: 15 pages, 14 figures; Open Access at http://www.mdpi.org/sensors/papers/s8095501.pd
    corecore