2 research outputs found

    Spectrum and transmission range aware clustering for cognitive radio ad hoc networks

    Get PDF
    Cognitive radio network (CRN) is a promising technology to overcome the problem of spectrum shortage by enabling the unlicensed users to access the underutilization spectrum bands in an opportunistic manner. On the other hand, the hardness of establishing a fixed infrastructure in specific situations such as disaster recovery, and battlefield communication imposes the network to have an ad hoc structure. Thus, the emerging of Cognitive Radio Ad Hoc Network (CRAHN) has accordingly become imperative. However, the practical implementation of CRAHN faced many challenges such as control channel establishment and the scalability problems. Clustering that divides the network into virtual groups is a reliable solution to handle these issues. However, previous clustering methods for CRAHNs seem to be impractical due to issues regarding the high number of constructed clusters and unfair load distribution among the clusters. Additionally, the homogeneous channel model was considered in the previous work despite channel heterogeneity is the CRN features. This thesis addressed these issues by proposing two clustering schemes, where the heterogeneous channel is considered in the clustering process. First, a distributed clustering algorithm called Spectrum and Transmission Range Aware Clustering (STRAC) which exploits the heterogeneous channel concept is proposed. Here, a novel cluster head selection function is formulated. An analytical model is derived to validate the STRAC outcomes. Second, in order to improve the bandwidth utilization, a Load Balanced Spectrum and Transmission Range Aware Clustering (LB-STRAC) is proposed. This algorithm jointly considers the channel heterogeneity and load balancing concepts. Simulation results show that on average, STRAC reduces the number of constructed clusters up to 51% compared to conventional clustering technique, Spectrum Opportunity based Clustering (SOC). In addition, STRAC significantly reduces the one-member cluster ratio and re-affiliation ratio in comparison to non-heterogeneity channel consideration schemes. LB-STRAC further improved the clustering performance by outperforming STRAC in terms of uniformity and equality of the traffic load distribution among all clusters with fair spectrum allocation. Moreover, LB-STRAC has been shown to be very effective in improving the bandwidth utilization. For equal traffic load scenario, LB-STRAC on average improves the bandwidth utilization by 24.3% compared to STRAC. Additionally, for varied traffic load scenario, LB-STRAC improves the bandwidth utilization by 31.9% and 25.4% on average compared with STRAC for non-uniform slot allocation and for uniform slot allocation respectively. Thus, LB-STRAC is highly recommended for multi-source scenarios such as continuous monitoring applications or situation awareness applications

    Enhanced stability of cluster-based location service mechanism for urban vehicular ad hoc networks

    Get PDF
    Vehicular Ad Hoc Networks (VANETs) are gaining tremendous research interest in developing an Intelligent Transportation System (ITS) for smart cities. The position of vehicles plays a significant role in ITS applications and services such as public emergency, vehicles tracking, resource discovery, traffic monitoring and position-based routing. The location service is used to keep up-to-date records of current positions of vehicles. A review of previous literatures, found various locationbased service mechanisms have been proposed to manage the position of vehicles. The cluster-based location service mechanisms have achieved growing attention due to their advantages such as scalability, reliability and reduced communication overhead. However, the performance of the cluster-based location service mechanism depends on the stability of the cluster, and the stability of the cluster depends on the stability of the Cluster Head (CH), Cluster Member (CM) and cluster maintenance. In the existing cluster-based location service schemes, the issue of CH instability arises due to the non-optimal cluster formation range and unreliable communication link with Road Side Unit (RSU). The non-optimal cluster formation range causes CH instability due to lack of uniqueness of Centroid Vehicle (CV), uncertainty of participating vehicles in the CH election process and unreliability of the Cluster Head Election Value (CHEV). Also, the unreliable link with RSU does not guarantee that CH is stable with respect to its CMs and RSU simultaneously. The issue of CM instability in the existing cluster-based location service schemes occurs due to using instantaneous speed of the CH and fixed CM affiliation threshold values. The instantaneous speed causes the CM to switch the clusters frequently and fixed CM affiliation threshold values increase isolated vehicles. The frequent switching of isolated vehicles augment the CM instability. Moreover, the inefficient cluster maintenance due to non-optimal cluster merging and cluster splitting also contributes to cluster instability. The merging conditions such as fixed merging threshold time and uncertain movement of overlapping CHs within merging threshold time cause the cluster instability. Furthermore, the unnecessary clustering during cluster splitting around the intersection due to CH election parameters also increases cluster instability. Therefore, to address the aforementioned cluster instability issues, Enhanced Stability of Cluster-based Location Service (ESCLS) mechanism was proposed for urban VANETs. The proposed ESCLS mechanism consists of three complementary schemes which are Reliable Cluster Head Election (RCHE), Dynamic Cumulative Cluster Member Affiliation (DCCMA) and Optimized Cluster Maintenance (OCM). Firstly, the aim of the RCHE scheme was to enhance the stability of the CH through optimizing the cluster formation range and by considering communication link reliability with the RSU. Secondly, the DCCMA scheme focussed on improving the stability of the CMs by considering the Cumulative Moving Average Speed (CMAS) of the CH and dynamic CM affiliation threshold values, and finally, the OCM scheme enhanced the cluster stability by improving cluster merging conditions and reducing unnecessary clustering in cluster splitting. The results of the simulation verified the improved performance of the ESCLS in terms of increasing the location query success rate by 34%, and decreasing the query response delay and localization error by 24% and 35% respectively as compared to the existing cluster-based location service schemes such as HCBLS, CBLS and MoGLS. In conclusion, it is proven that ESCLS is a suitable location service mechanism for a wide range of position-based applications of VANETs that require timely and accurate vehicle locations
    corecore