2 research outputs found

    Position control of parallel active link suspension with backlash

    Get PDF
    In this paper, a position control scheme for the novel Parallel Active Link Suspension (PALS) with backlash is developed to enhance the vehicle ride comfort and road holding. A PALS-retrofitted quarter car test rig is adopted, with the torque flow and backlash effect on the suspension performance analyzed. An elastic linear equivalent model of the PALS-retrofitted quarter car, which bridges the actuator position and the equivalent force between the sprung and unsprung masses, is proposed and mathematically derived, with both the geometry and backlash nonlinearities compensated. A position control scheme is then synthesized, with an outer-loop H∞ control for ride comfort and road holding enhancement and an inner-loop cascaded proportional-integral control for the reference position tracking. Experiments with the PALS-retrofitted quarter car test rig are performed over road cases of a harmonic road, a smoothed bump and frequency swept road excitation. As compared to a conventional torque control scheme, the newly proposed position control maintains the performance enhancement by the PALS, while it notably attenuates the overshoot in the actuator’s speed variation, and thereby it benefits the PALS with less power demand and less suspension deflection increment

    Control design for a quarter car test rig with parallel active link Suspension

    No full text
    In this paper, a recently proposed novel vehicle suspension of Parallel Active Link Suspension (PALS) is adapted on a quarter car test rig. Control strategies with the PALS are studied and synthesized for ride comfort and road holding performance enhancement. A linear equivalent model of the PALS-retrofitted quarter car is derived, with geometric nonlinearity compensated. A linear control scheme is then synthesized, with an outer-loop H-infinity control and an inner-loop actuator torque tracking. Nonlinear simulations with the model of the PALS-retrofitted quarter car test rig are performed over typical road profiles, including 2 Hz harmonic road, smoothed bump and hole, and ISO random road. Results are discussed to evaluate the potential of the PALS-retrofitted quarter car test rig in ride comfort and road holding performance enhancement, as well as the power consumption in the actuator
    corecore