5,751 research outputs found

    Spectral Normalized Dual Contrastive Regularization for Image-to-Image Translation

    Full text link
    Existing image-to-image (I2I) translation methods achieve state-of-the-art performance by incorporating the patch-wise contrastive learning into Generative Adversarial Networks. However, patch-wise contrastive learning only focuses on the local content similarity but neglects the global structure constraint, which affects the quality of the generated images. In this paper, we propose a new unpaired I2I translation framework based on dual contrastive regularization and spectral normalization, namely SN-DCR. To maintain consistency of the global structure and texture, we design the dual contrastive regularization using different deep feature spaces respectively. In order to improve the global structure information of the generated images, we formulate a semantically contrastive loss to make the global semantic structure of the generated images similar to the real images from the target domain in the semantic feature space. We use Gram Matrices to extract the style of texture from images. Similarly, we design style contrastive loss to improve the global texture information of the generated images. Moreover, to enhance the stability of model, we employ the spectral normalized convolutional network in the design of our generator. We conduct the comprehensive experiments to evaluate the effectiveness of SN-DCR, and the results prove that our method achieves SOTA in multiple tasks

    Conditional Restricted Boltzmann Machines for Structured Output Prediction

    Full text link
    Conditional Restricted Boltzmann Machines (CRBMs) are rich probabilistic models that have recently been applied to a wide range of problems, including collaborative filtering, classification, and modeling motion capture data. While much progress has been made in training non-conditional RBMs, these algorithms are not applicable to conditional models and there has been almost no work on training and generating predictions from conditional RBMs for structured output problems. We first argue that standard Contrastive Divergence-based learning may not be suitable for training CRBMs. We then identify two distinct types of structured output prediction problems and propose an improved learning algorithm for each. The first problem type is one where the output space has arbitrary structure but the set of likely output configurations is relatively small, such as in multi-label classification. The second problem is one where the output space is arbitrarily structured but where the output space variability is much greater, such as in image denoising or pixel labeling. We show that the new learning algorithms can work much better than Contrastive Divergence on both types of problems
    • …
    corecore