22,722 research outputs found

    Prototypical Contrastive Learning of Unsupervised Representations

    Full text link
    This paper presents Prototypical Contrastive Learning (PCL), an unsupervised representation learning method that addresses the fundamental limitations of instance-wise contrastive learning. PCL not only learns low-level features for the task of instance discrimination, but more importantly, it implicitly encodes semantic structures of the data into the learned embedding space. Specifically, we introduce prototypes as latent variables to help find the maximum-likelihood estimation of the network parameters in an Expectation-Maximization framework. We iteratively perform E-step as finding the distribution of prototypes via clustering and M-step as optimizing the network via contrastive learning. We propose ProtoNCE loss, a generalized version of the InfoNCE loss for contrastive learning, which encourages representations to be closer to their assigned prototypes. PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks with substantial improvement in low-resource transfer learning. Code and pretrained models are available at https://github.com/salesforce/PCL

    Contrastive Prompt Learning-based Code Search based on Interaction Matrix

    Full text link
    Code search aims to retrieve the code snippet that highly matches the given query described in natural language. Recently, many code pre-training approaches have demonstrated impressive performance on code search. However, existing code search methods still suffer from two performance constraints: inadequate semantic representation and the semantic gap between natural language (NL) and programming language (PL). In this paper, we propose CPLCS, a contrastive prompt learning-based code search method based on the cross-modal interaction mechanism. CPLCS comprises:(1) PL-NL contrastive learning, which learns the semantic matching relationship between PL and NL representations; (2) a prompt learning design for a dual-encoder structure that can alleviate the problem of inadequate semantic representation; (3) a cross-modal interaction mechanism to enhance the fine-grained mapping between NL and PL. We conduct extensive experiments to evaluate the effectiveness of our approach on a real-world dataset across six programming languages. The experiment results demonstrate the efficacy of our approach in improving semantic representation quality and mapping ability between PL and NL

    DCdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection

    Full text link
    Time series anomaly detection is critical for a wide range of applications. It aims to identify deviant samples from the normal sample distribution in time series. The most fundamental challenge for this task is to learn a representation map that enables effective discrimination of anomalies. Reconstruction-based methods still dominate, but the representation learning with anomalies might hurt the performance with its large abnormal loss. On the other hand, contrastive learning aims to find a representation that can clearly distinguish any instance from the others, which can bring a more natural and promising representation for time series anomaly detection. In this paper, we propose DCdetector, a multi-scale dual attention contrastive representation learning model. DCdetector utilizes a novel dual attention asymmetric design to create the permutated environment and pure contrastive loss to guide the learning process, thus learning a permutation invariant representation with superior discrimination abilities. Extensive experiments show that DCdetector achieves state-of-the-art results on multiple time series anomaly detection benchmark datasets. Code is publicly available at https://github.com/DAMO-DI-ML/KDD2023-DCdetector

    Contrastive Audio-Visual Masked Autoencoder

    Full text link
    In this paper, we first extend the recent Masked Auto-Encoder (MAE) model from a single modality to audio-visual multi-modalities. Subsequently, we propose the Contrastive Audio-Visual Masked Auto-Encoder (CAV-MAE) by combining contrastive learning and masked data modeling, two major self-supervised learning frameworks, to learn a joint and coordinated audio-visual representation. Our experiments show that the contrastive audio-visual correspondence learning objective not only enables the model to perform audio-visual retrieval tasks, but also helps the model learn a better joint representation. As a result, our fully self-supervised pretrained CAV-MAE achieves a new SOTA accuracy of 65.9% on VGGSound, and is comparable with the previous best supervised pretrained model on AudioSet in the audio-visual event classification task. Code and pretrained models are at https://github.com/yuangongnd/cav-mae.Comment: Accepted at ICLR 2023 as a notable top 25% paper. Code and pretrained models are at https://github.com/yuangongnd/cav-ma

    NCAGC: A Neighborhood Contrast Framework for Attributed Graph Clustering

    Full text link
    Attributed graph clustering is one of the most fundamental tasks among graph learning field, the goal of which is to group nodes with similar representations into the same cluster without human annotations. Recent studies based on graph contrastive learning method have achieved remarkable results when exploit graph-structured data. However, most existing methods 1) do not directly address the clustering task, since the representation learning and clustering process are separated; 2) depend too much on data augmentation, which greatly limits the capability of contrastive learning; 3) ignore the contrastive message for clustering tasks, which adversely degenerate the clustering results. In this paper, we propose a Neighborhood Contrast Framework for Attributed Graph Clustering, namely NCAGC, seeking for conquering the aforementioned limitations. Specifically, by leveraging the Neighborhood Contrast Module, the representation of neighbor nodes will be 'push closer' and become clustering-oriented with the neighborhood contrast loss. Moreover, a Contrastive Self-Expression Module is built by minimizing the node representation before and after the self-expression layer to constraint the learning of self-expression matrix. All the modules of NCAGC are optimized in a unified framework, so the learned node representation contains clustering-oriented messages. Extensive experimental results on four attributed graph datasets demonstrate the promising performance of NCAGC compared with 16 state-of-the-art clustering methods. The code is available at https://github.com/wangtong627/NCAGC
    • …
    corecore