3 research outputs found

    Semantic Instance Meets Salient Object: Study on Video Semantic Salient Instance Segmentation

    Full text link
    Focusing on only semantic instances that only salient in a scene gains more benefits for robot navigation and self-driving cars than looking at all objects in the whole scene. This paper pushes the envelope on salient regions in a video to decompose them into semantically meaningful components, namely, semantic salient instances. We provide the baseline for the new task of video semantic salient instance segmentation (VSSIS), that is, Semantic Instance - Salient Object (SISO) framework. The SISO framework is simple yet efficient, leveraging advantages of two different segmentation tasks, i.e. semantic instance segmentation and salient object segmentation to eventually fuse them for the final result. In SISO, we introduce a sequential fusion by looking at overlapping pixels between semantic instances and salient regions to have non-overlapping instances one by one. We also introduce a recurrent instance propagation to refine the shapes and semantic meanings of instances, and an identity tracking to maintain both the identity and the semantic meaning of instances over the entire video. Experimental results demonstrated the effectiveness of our SISO baseline, which can handle occlusions in videos. In addition, to tackle the task of VSSIS, we augment the DAVIS-2017 benchmark dataset by assigning semantic ground-truth for salient instance labels, obtaining SEmantic Salient Instance Video (SESIV) dataset. Our SESIV dataset consists of 84 high-quality video sequences with pixel-wisely per-frame ground-truth labels.Comment: accepted in WACV 201

    Region-Based Multiscale Spatiotemporal Saliency for Video

    Full text link
    Detecting salient objects from a video requires exploiting both spatial and temporal knowledge included in the video. We propose a novel region-based multiscale spatiotemporal saliency detection method for videos, where static features and dynamic features computed from the low and middle levels are combined together. Our method utilizes such combined features spatially over each frame and, at the same time, temporally across frames using consistency between consecutive frames. Saliency cues in our method are analyzed through a multiscale segmentation model, and fused across scale levels, yielding to exploring regions efficiently. An adaptive temporal window using motion information is also developed to combine saliency values of consecutive frames in order to keep temporal consistency across frames. Performance evaluation on several popular benchmark datasets validates that our method outperforms existing state-of-the-arts

    Video Salient Object Detection Using Spatiotemporal Deep Features

    Full text link
    This paper presents a method for detecting salient objects in videos where temporal information in addition to spatial information is fully taken into account. Following recent reports on the advantage of deep features over conventional hand-crafted features, we propose a new set of SpatioTemporal Deep (STD) features that utilize local and global contexts over frames. We also propose new SpatioTemporal Conditional Random Field (STCRF) to compute saliency from STD features. STCRF is our extension of CRF to the temporal domain and describes the relationships among neighboring regions both in a frame and over frames. STCRF leads to temporally consistent saliency maps over frames, contributing to the accurate detection of salient objects' boundaries and noise reduction during detection. Our proposed method first segments an input video into multiple scales and then computes a saliency map at each scale level using STD features with STCRF. The final saliency map is computed by fusing saliency maps at different scale levels. Our experiments, using publicly available benchmark datasets, confirm that the proposed method significantly outperforms state-of-the-art methods. We also applied our saliency computation to the video object segmentation task, showing that our method outperforms existing video object segmentation methods.Comment: accepted at TI
    corecore