1,191 research outputs found

    Dimension on Discrete Spaces

    Full text link
    In this paper we develop some combinatorial models for continuous spaces. In this spirit we study the approximations of continuous spaces by graphs, molecular spaces and coordinate matrices. We define the dimension on a discrete space by means of axioms, and the axioms are based on an obvious geometrical background. This work presents some discrete models of n-dimensional Euclidean spaces, n-dimensional spheres, a torus and a projective plane. It explains how to construct new discrete spaces and describes in this connection several three-dimensional closed surfaces with some topological singularities It also analyzes the topology of (3+1)-spacetime. We are also discussing the question by R. Sorkin [19] about how to derive the system of simplicial complexes from a system of open covering of a topological space S.Comment: 16 pages, 8 figures, Latex. Figures are not included, available from the author upon request. Preprint SU-GP-93/1-1. To appear in "International Journal of Theoretical Physics

    On string topology of classifying spaces

    Get PDF
    Let G be a compact Lie group. By work of Chataur and Menichi, the homology of the space of free loops in the classifying space of G is known to be the value on the circle in a homological conformal field theory. This means in particular that it admits operations parameterized by homology classes of classifying spaces of diffeomorphism groups of surfaces. Here we present a radical extension of this result, giving a new construction in which diffeomorphisms are replaced with homotopy equivalences, and surfaces with boundary are replaced with arbitrary spaces homotopy equivalent to finite graphs. The result is a novel kind of field theory which is related to both the diffeomorphism groups of surfaces and the automorphism groups of free groups with boundaries. Our work shows that the algebraic structures in string topology of classifying spaces can be brought into line with, and in fact far exceed, those available in string topology of manifolds. For simplicity, we restrict to the characteristic 2 case. The generalization to arbitrary characteristic will be addressed in a subsequent paper.Comment: 93 pages; v4: minor changes; to appear in Advances in Mathematic
    corecore