3 research outputs found
Material Properties of MBE Grown ZnTe, GaSb and Their Heterostructures for Optoelectronic Device Applications
abstract: Recently a new materials platform consisting of semiconductors grown on GaSb and InAs substrates with lattice constants close to 6.1 A was proposed by our group for various electronic and optoelectronic applications. This materials platform consists of both II-VI (MgZnCdHg)(SeTe) and III-V (InGaAl)(AsSb) compound semiconductors, which have direct bandgaps spanning the entire energy spectrum from far-IR (~0 eV) up to UV (~3.4 eV). The broad range of bandgaps and material properties make it very attractive for a wide range of applications in optoelectronics, such as solar cells, laser diodes, light emitting diodes, and photodetectors. Moreover, this novel materials system potentially offers unlimited degrees of freedom for integration of electronic and optoelectronic devices onto a single substrate while keeping the best possible materials quality with very low densities of misfit dislocations. This capability is not achievable with any other known lattice-matched semiconductors on any available substrate. In the 6.1-A materials system, the semiconductors ZnTe and GaSb are almost perfectly lattice-matched with a lattice mismatch of only 0.13%. Correspondingly, it is expected that high quality ZnTe/GaSb and GaSb/ZnTe heterostructures can be achieved with very few dislocations generated during growth. To fulfill the task, their MBE growth and material properties are carefully investigated. High quality ZnTe layers grown on various III-V substrates and GaSb grown on ZnTe are successfully achieved using MBE. It is also noticed that ZnTe and GaSb have a type-I band-edge alignment with large band offsets (delta_Ec=0.934 eV, delta_Ev=0.6 eV), which provides strong confinement for both electrons and holes. Furthermore, a large difference in refractive index is found between ZnTe and GaSb (2.7 and 3.9, respectively, at 0.7 eV), leading to excellent optical confinement of the guided optical modes in planar semiconductor lasers or distributed Bragg reflectors (DBR) for vertical-cavity surface-emitting lasers. Therefore, GaSb/ZnTe double-heterostructure and ZnTe/GaSb DBR structure are suitable for use in light emitting devices. In this thesis work, experimental demonstration of these structures with excellent structural and optical properties is reported. During the exploration on the properties of various ZnTe heterostructures, it is found that residual tensile strains exist in the thick ZnTe epilayers when they are grown on GaAs, InP, InAs and GaSb substrates. The presence of tensile strains is due to the difference in thermal expansion coefficients between the epilayers and the substrates. The defect densities in these ZnTe layers become lower as the ZnTe layer thickness increases. Growth of high quality GaSb on ZnTe can be achieved using a temperature ramp during growth. The influence of temperature ramps with different ramping rates in the optical properties of GaSb layer is studied, and the samples grown with a temperature ramp from 360 to 470 C at a rate of 33 C/min show the narrowest bound exciton emission peak with a full width at half maximum of 15 meV. ZnTe/GaSb DBR structures show excellent reflectivity properties in the mid-infrared range. A peak reflectance of 99% with a wide stopband of 480 nm centered at 2.5 um is measured from a ZnTe/GaSb DBR sample of only 7 quarter-wavelength pairs.Dissertation/ThesisPh.D. Physics 201
Modelling and Design of Advanced High Speed Vertical Cavity Semiconductor Lasers
Vertical-cavity surface-emitting laser (VCSEL) constructions capable of direct modulation at bit rates in excess of 40 GBit/s have attracted considerable attention for future high speed long- and medium-haul networks. The two main approaches to realising this goal are, firstly, the improvement in the direct current modulation laser performance, with 40 GBit/s direct modulation having been demonstrated recently, and, secondly, using advanced modulation schemes. These, in turn, fall into two major categories: firstly, modulation of the photon lifetime in the cavity as an alternative to current modulation, and, secondly, current modulation enhanced by photon-photon resonance in a specialised laser structure (e.g. using an external cavity [1], or a laser array [2]). Theoretical models describing both of these solutions have been developed, but appear to have certain limitations which will be discussed later in the thesis, and no systematic analysis and comparison of modulation properties of advanced modulation scheme had been performed, to the best of my knowledge. This was the purpose of my PhD project.
In order to understand the performance of the photon lifetime modulation for Compound Vertical Cavity Surface Emitting Semiconductor Lasers more accurately, a model involving careful analysis of both amplitude and frequency (phase) of laser emission, as well as the spectrally selective nature of the laser cavity, is required. We have developed such a model and used it to describe the laser operation and predict the performance beyond current experimental conditions in both large and small signal modulation regimes for the first time according to our knowledge.
Finally, we studied the alternative method of ultrafast modulation of VCSELs, consisting of current modulation enhanced by photon-photon resonance. The analysis concentrates on the version of the method involving an in-plane integrated extended cavity. A new model is developed to overcome the limitations of existing models and to allow better understanding of the dynamic of the in-plane laser cavity
Optoelectronics – Devices and Applications
Optoelectronics - Devices and Applications is the second part of an edited anthology on the multifaced areas of optoelectronics by a selected group of authors including promising novices to experts in the field. Photonics and optoelectronics are making an impact multiple times as the semiconductor revolution made on the quality of our life. In telecommunication, entertainment devices, computational techniques, clean energy harvesting, medical instrumentation, materials and device characterization and scores of other areas of R&D the science of optics and electronics get coupled by fine technology advances to make incredibly large strides. The technology of light has advanced to a stage where disciplines sans boundaries are finding it indispensable. New design concepts are fast emerging and being tested and applications developed in an unimaginable pace and speed. The wide spectrum of topics related to optoelectronics and photonics presented here is sure to make this collection of essays extremely useful to students and other stake holders in the field such as researchers and device designers
