298 research outputs found

    Spurious trend switching phenomena in financial markets

    Full text link
    The observation of power laws in the time to extrema of volatility, volume and intertrade times, from milliseconds to years, are shown to result straightforwardly from the selection of biased statistical subsets of realizations in otherwise featureless processes such as random walks. The bias stems from the selection of price peaks that imposes a condition on the statistics of price change and of trade volumes that skew their distributions. For the intertrade times, the extrema and power laws results from the format of transaction data

    Multi-Fractal Spectral Analysis of the 1987 Stock Market Crash

    Get PDF
    The multifractal model of asset returns captures the volatility persistence of many financial time series. Its multifractal spectrum computed from wavelet modulus maxima lines provides the spectrum of irregularities in the distribution of market returns over time and thereby of the kind of uncertainty or randomness in a particular market. Changes in this multifractal spectrum display distinctive patterns around substantial market crashes or drawdowns. In other words, the kinds of singularities and the kinds of irregularity change in a distinct fashion in the periods immediately preceding and following major market drawdowns. This paper focuses on these identifiable multifractal spectral patterns surrounding the stock market crash of 1987. Although we are not able to find a uniquely identifiable irregularity pattern within the same market preceding different crashes at different times, we do find the same uniquely identifiable pattern in various stock markets experiencing the same crash at the same time. Moreover, our results suggest that all such crashes are preceded by a gradual increase in the weighted average of the values of the Lipschitz regularity exponents, under low dispersion of the multifractal spectrum. At a crash, this weighted average irregularity value drops to a much lower value, while the dispersion of the spectrum of Lipschitz exponents jumps up to a much higher level after the crash. Our most striking result, therefore, is that the multifractal spectra of stock market returns are not stationary. Also, while the stock market returns show a global Hurst exponent of slight persistence 0.5Financial Markets, Persistence, Multi-Fractal Spectral Analysis, Wavelets

    Multifractality in the stock market: price increments versus waiting times

    Full text link
    By applying the multifractal detrended fluctuation analysis to the high-frequency tick-by-tick data from Deutsche B\"orse both in the price and in the time domains, we investigate multifractal properties of the time series of logarithmic price increments and inter-trade intervals of time. We show that both quantities reveal multiscaling and that this result holds across different stocks. The origin of the multifractal character of the corresponding dynamics is, among others, the long-range correlations in price increments and in inter-trade time intervals as well as the non-Gaussian distributions of the fluctuations. Since the transaction-to-transaction price increments do not strongly depend on or are almost independent of the inter-trade waiting times, both can be sources of the observed multifractal behaviour of the fixed-delay returns and volatility. The results presented also allow one to evaluate the applicability of the Multifractal Model of Asset Returns in the case of tick-by-tick data.Comment: Physica A, in prin

    Multifractal model of asset returns with leverage effect

    Full text link
    Multifractal processes are a relatively new tool of stock market analysis. Their power lies in the ability to take multiple orders of autocorrelations into account explicitly. In the first part of the paper we discuss the framework of the Lux model and refine the underlying phenomenological picture. We also give a procedure of fitting all parameters to empirical data. We present a new approach to account for the effective length of power-law memory in volatility. The second part of the paper deals with the consequences of asymmetry in returns. We incorporate two related stylized facts, skewness and leverage autocorrelations into the model. Then from Monte Carlo measurements we show, that this asymmetry significantly increases the mean squared error of volatility forecasts. Based on a filtering method we give evidence on similar behavior in empirical data.Comment: 23 pages, 8 figures, updated some figures and references, fixed two typos, accepted to Physica

    Empirical Behavior of a World Stock Index from Intra-Day to Monthly Time Scales

    Get PDF
    Most of the papers that study the distributional and fractal properties of financial instruments focus on stock prices or foreign exchange rates. This typically leads to mixed results concerning the distributions of log-returns and some multi-fractal properties of exchange rates, stock prices, and regional indices. This paper uses a well diversified world stock index as the central object of analysis. Such index approximates the growth optimal portfolio, which is demonstrated under the benchmark approach, it is the ideal reference unit for studying basic securities. When denominating this world index in units of a given currency, one measures the movements of the currency against the entire market. This provides a least disturbed observation of the currency dynamics. In this manner, one can expect to disentangle, e.g., the superposition of the two currencies involved in an exchange rate. This benchmark approach to the empirical analysis of financial data allows us to establish remarkable stylized facts. Most important is the observation that the repeatedly documented multi-fractal appearance of financial time series is very weak and much less pronounced than the deviation of the mono-scaling properties from Brownian-motion type scaling. The generalized Hurst exponent H(2) assumes typical values between 0.55 and 0.6. Accordingly, autocorrelations of log-returns decay according to a power law, and the quadratic variation vanishes when going to vanishing observation time step size. Furthermore, one can identify the Student t distribution as the log-return distribution of a well-diversified world stock index for long time horizons when a long enough data series is used for estimation. The study of dependence properties, finally, reveals that jumps at daily horizon originate primarily in the stock market while at 5 min horizon they originate in the foreign exchange market. These results are contrasted with the behavior of foreign exchange rates. The principal message of the empirical analysis is that there is evidence that a diffusion model without multi-scaling could reasonably well model the dynamics of a broadly diversified world stock index.
    corecore