660 research outputs found

    A Tour of Reinforcement Learning: The View from Continuous Control

    Full text link
    This manuscript surveys reinforcement learning from the perspective of optimization and control with a focus on continuous control applications. It surveys the general formulation, terminology, and typical experimental implementations of reinforcement learning and reviews competing solution paradigms. In order to compare the relative merits of various techniques, this survey presents a case study of the Linear Quadratic Regulator (LQR) with unknown dynamics, perhaps the simplest and best-studied problem in optimal control. The manuscript describes how merging techniques from learning theory and control can provide non-asymptotic characterizations of LQR performance and shows that these characterizations tend to match experimental behavior. In turn, when revisiting more complex applications, many of the observed phenomena in LQR persist. In particular, theory and experiment demonstrate the role and importance of models and the cost of generality in reinforcement learning algorithms. This survey concludes with a discussion of some of the challenges in designing learning systems that safely and reliably interact with complex and uncertain environments and how tools from reinforcement learning and control might be combined to approach these challenges.Comment: minor revision with a few clarifying passages and corrected typo

    On the Sample Complexity of the Linear Quadratic Regulator

    Full text link
    This paper addresses the optimal control problem known as the Linear Quadratic Regulator in the case when the dynamics are unknown. We propose a multi-stage procedure, called Coarse-ID control, that estimates a model from a few experimental trials, estimates the error in that model with respect to the truth, and then designs a controller using both the model and uncertainty estimate. Our technique uses contemporary tools from random matrix theory to bound the error in the estimation procedure. We also employ a recently developed approach to control synthesis called System Level Synthesis that enables robust control design by solving a convex optimization problem. We provide end-to-end bounds on the relative error in control cost that are nearly optimal in the number of parameters and that highlight salient properties of the system to be controlled such as closed-loop sensitivity and optimal control magnitude. We show experimentally that the Coarse-ID approach enables efficient computation of a stabilizing controller in regimes where simple control schemes that do not take the model uncertainty into account fail to stabilize the true system.Comment: Contains a new analysis of finite-dimensional truncation, a new data-dependent estimation bound, and an expanded exposition on necessary background in control theory and System Level Synthesi

    RLOC: Neurobiologically Inspired Hierarchical Reinforcement Learning Algorithm for Continuous Control of Nonlinear Dynamical Systems

    Full text link
    Nonlinear optimal control problems are often solved with numerical methods that require knowledge of system's dynamics which may be difficult to infer, and that carry a large computational cost associated with iterative calculations. We present a novel neurobiologically inspired hierarchical learning framework, Reinforcement Learning Optimal Control, which operates on two levels of abstraction and utilises a reduced number of controllers to solve nonlinear systems with unknown dynamics in continuous state and action spaces. Our approach is inspired by research at two levels of abstraction: first, at the level of limb coordination human behaviour is explained by linear optimal feedback control theory. Second, in cognitive tasks involving learning symbolic level action selection, humans learn such problems using model-free and model-based reinforcement learning algorithms. We propose that combining these two levels of abstraction leads to a fast global solution of nonlinear control problems using reduced number of controllers. Our framework learns the local task dynamics from naive experience and forms locally optimal infinite horizon Linear Quadratic Regulators which produce continuous low-level control. A top-level reinforcement learner uses the controllers as actions and learns how to best combine them in state space while maximising a long-term reward. A single optimal control objective function drives high-level symbolic learning by providing training signals on desirability of each selected controller. We show that a small number of locally optimal linear controllers are able to solve global nonlinear control problems with unknown dynamics when combined with a reinforcement learner in this hierarchical framework. Our algorithm competes in terms of computational cost and solution quality with sophisticated control algorithms and we illustrate this with solutions to benchmark problems.Comment: 33 pages, 8 figure

    Optimal and Learning Control for Autonomous Robots

    Full text link
    Optimal and Learning Control for Autonomous Robots has been taught in the Robotics, Systems and Controls Masters at ETH Zurich with the aim to teach optimal control and reinforcement learning for closed loop control problems from a unified point of view. The starting point is the formulation of of an optimal control problem and deriving the different types of solutions and algorithms from there. These lecture notes aim at supporting this unified view with a unified notation wherever possible, and a bit of a translation help to compare the terminology and notation in the different fields. The course assumes basic knowledge of Control Theory, Linear Algebra and Stochastic Calculus.Comment: Lecture Notes, 101 page

    Least-Squares Temporal Difference Learning for the Linear Quadratic Regulator

    Full text link
    Reinforcement learning (RL) has been successfully used to solve many continuous control tasks. Despite its impressive results however, fundamental questions regarding the sample complexity of RL on continuous problems remain open. We study the performance of RL in this setting by considering the behavior of the Least-Squares Temporal Difference (LSTD) estimator on the classic Linear Quadratic Regulator (LQR) problem from optimal control. We give the first finite-time analysis of the number of samples needed to estimate the value function for a fixed static state-feedback policy to within ε\varepsilon-relative error. In the process of deriving our result, we give a general characterization for when the minimum eigenvalue of the empirical covariance matrix formed along the sample path of a fast-mixing stochastic process concentrates above zero, extending a result by Koltchinskii and Mendelson in the independent covariates setting. Finally, we provide experimental evidence indicating that our analysis correctly captures the qualitative behavior of LSTD on several LQR instances

    Performance guarantees for model-based Approximate Dynamic Programming in continuous spaces

    Full text link
    We study both the value function and Q-function formulation of the Linear Programming approach to Approximate Dynamic Programming. The approach is model-based and optimizes over a restricted function space to approximate the value function or Q-function. Working in the discrete time, continuous space setting, we provide guarantees for the fitting error and online performance of the policy. In particular, the online performance guarantee is obtained by analyzing an iterated version of the greedy policy, and the fitting error guarantee by analyzing an iterated version of the Bellman inequality. These guarantees complement the existing bounds that appear in the literature. The Q-function formulation offers benefits, for example, in decentralized controller design, however it can lead to computationally demanding optimization problems. To alleviate this drawback, we provide a condition that simplifies the formulation, resulting in improved computational times.Comment: 18 pages, 5 figures, journal pape

    The Gap Between Model-Based and Model-Free Methods on the Linear Quadratic Regulator: An Asymptotic Viewpoint

    Full text link
    The effectiveness of model-based versus model-free methods is a long-standing question in reinforcement learning (RL). Motivated by recent empirical success of RL on continuous control tasks, we study the sample complexity of popular model-based and model-free algorithms on the Linear Quadratic Regulator (LQR). We show that for policy evaluation, a simple model-based plugin method requires asymptotically less samples than the classical least-squares temporal difference (LSTD) estimator to reach the same quality of solution; the sample complexity gap between the two methods can be at least a factor of state dimension. For policy evaluation, we study a simple family of problem instances and show that nominal (certainty equivalence principle) control also requires several factors of state and input dimension fewer samples than the policy gradient method to reach the same level of control performance on these instances. Furthermore, the gap persists even when employing commonly used baselines. To the best of our knowledge, this is the first theoretical result which demonstrates a separation in the sample complexity between model-based and model-free methods on a continuous control task.Comment: Improved the main result regarding policy optimizatio

    From self-tuning regulators to reinforcement learning and back again

    Full text link
    Machine and reinforcement learning (RL) are increasingly being applied to plan and control the behavior of autonomous systems interacting with the physical world. Examples include self-driving vehicles, distributed sensor networks, and agile robots. However, when machine learning is to be applied in these new settings, the algorithms had better come with the same type of reliability, robustness, and safety bounds that are hallmarks of control theory, or failures could be catastrophic. Thus, as learning algorithms are increasingly and more aggressively deployed in safety critical settings, it is imperative that control theorists join the conversation. The goal of this tutorial paper is to provide a starting point for control theorists wishing to work on learning related problems, by covering recent advances bridging learning and control theory, and by placing these results within an appropriate historical context of system identification and adaptive control.Comment: Tutorial paper, 2019 IEEE Conference on Decision and Control, to appea

    Hamilton-Jacobi-Bellman Equations for Q-Learning in Continuous Time

    Full text link
    In this paper, we introduce Hamilton-Jacobi-Bellman (HJB) equations for Q-functions in continuous time optimal control problems with Lipschitz continuous controls. The standard Q-function used in reinforcement learning is shown to be the unique viscosity solution of the HJB equation. A necessary and sufficient condition for optimality is provided using the viscosity solution framework. By using the HJB equation, we develop a Q-learning method for continuous-time dynamical systems. A DQN-like algorithm is also proposed for high-dimensional state and control spaces. The performance of the proposed Q-learning algorithm is demonstrated using 1-, 10- and 20-dimensional dynamical systems.Comment: 2nd Annual Conference on Learning for Dynamics and Control (L4DC

    Finite-time Analysis of Approximate Policy Iteration for the Linear Quadratic Regulator

    Full text link
    We study the sample complexity of approximate policy iteration (PI) for the Linear Quadratic Regulator (LQR), building on a recent line of work using LQR as a testbed to understand the limits of reinforcement learning (RL) algorithms on continuous control tasks. Our analysis quantifies the tension between policy improvement and policy evaluation, and suggests that policy evaluation is the dominant factor in terms of sample complexity. Specifically, we show that to obtain a controller that is within ε\varepsilon of the optimal LQR controller, each step of policy evaluation requires at most (n+d)3/ε2(n+d)^3/\varepsilon^2 samples, where nn is the dimension of the state vector and dd is the dimension of the input vector. On the other hand, only log(1/ε)\log(1/\varepsilon) policy improvement steps suffice, resulting in an overall sample complexity of (n+d)3ε2log(1/ε)(n+d)^3 \varepsilon^{-2} \log(1/\varepsilon). We furthermore build on our analysis and construct a simple adaptive procedure based on ε\varepsilon-greedy exploration which relies on approximate PI as a sub-routine and obtains T2/3T^{2/3} regret, improving upon a recent result of Abbasi-Yadkori et al
    corecore