4,513 research outputs found

    Mismatched Quantum Filtering and Entropic Information

    Full text link
    Quantum filtering is a signal processing technique that estimates the posterior state of a quantum system under continuous measurements and has become a standard tool in quantum information processing, with applications in quantum state preparation, quantum metrology, and quantum control. If the filter assumes a nominal model that differs from reality, however, the estimation accuracy is bound to suffer. Here I derive identities that relate the excess error caused by quantum filter mismatch to the relative entropy between the true and nominal observation probability measures, with one identity for Gaussian measurements, such as optical homodyne detection, and another for Poissonian measurements, such as photon counting. These identities generalize recent seminal results in classical information theory and provide new operational meanings to relative entropy, mutual information, and channel capacity in the context of quantum experiments.Comment: v1: first draft, 8 pages, v2: added introduction and more results on mutual information and channel capacity, 12 pages, v3: minor updates, v4: updated the presentatio
    • …
    corecore