116,621 research outputs found

    Sequential Recurrent Neural Networks for Language Modeling

    Full text link
    Feedforward Neural Network (FNN)-based language models estimate the probability of the next word based on the history of the last N words, whereas Recurrent Neural Networks (RNN) perform the same task based only on the last word and some context information that cycles in the network. This paper presents a novel approach, which bridges the gap between these two categories of networks. In particular, we propose an architecture which takes advantage of the explicit, sequential enumeration of the word history in FNN structure while enhancing each word representation at the projection layer through recurrent context information that evolves in the network. The context integration is performed using an additional word-dependent weight matrix that is also learned during the training. Extensive experiments conducted on the Penn Treebank (PTB) and the Large Text Compression Benchmark (LTCB) corpus showed a significant reduction of the perplexity when compared to state-of-the-art feedforward as well as recurrent neural network architectures.Comment: published (INTERSPEECH 2016), 5 pages, 3 figures, 4 table

    Context dependent learning in neural networks

    Get PDF
    In this paper an extension to the standard error backpropagation learning rule for multi-layer feed forward neural networks is proposed, that enables them to be trained for context dependent information. The context dependent learning is realised by using a different error function (called Average Risk: AVR) in stead of the sum of squared errors (SQE) normally used in error backpropagation and by adapting the update rules. It is shown that for applications where this context dependent information is important, a major improvement in performance is obtained

    End-to-end Phoneme Sequence Recognition using Convolutional Neural Networks

    Get PDF
    Most phoneme recognition state-of-the-art systems rely on a classical neural network classifiers, fed with highly tuned features, such as MFCC or PLP features. Recent advances in ``deep learning'' approaches questioned such systems, but while some attempts were made with simpler features such as spectrograms, state-of-the-art systems still rely on MFCCs. This might be viewed as a kind of failure from deep learning approaches, which are often claimed to have the ability to train with raw signals, alleviating the need of hand-crafted features. In this paper, we investigate a convolutional neural network approach for raw speech signals. While convolutional architectures got tremendous success in computer vision or text processing, they seem to have been let down in the past recent years in the speech processing field. We show that it is possible to learn an end-to-end phoneme sequence classifier system directly from raw signal, with similar performance on the TIMIT and WSJ datasets than existing systems based on MFCC, questioning the need of complex hand-crafted features on large datasets.Comment: NIPS Deep Learning Workshop, 201
    • 

    corecore