7 research outputs found

    Arabidopsis thaliana computationally-generated next-state gene interaction models

    Get PDF
    The construction of gene interaction models must be a fully collaborative and intentional effort. All aspects of the research, such as growing the plants, extracting the measurements, refining the measured data, developing the statistical framework, and forming and applying the algorithmic techniques, must lend themselves to repeatable and sound practices. This paper holistically focuses on the process of producing gene interaction models based on transcript abundance data from Arabidopsis thaliana after stimulation by a plant hormone

    Bayesian probabilistic network modeling from multiple independent replicates

    Get PDF
    Often protein (or gene) time-course data are collected for multiple replicates. Each replicate generally has sparse data with the number of time points being less than the number of proteins. Usually each replicate is modeled separately. However, here all the information in each of the replicates is used to make a composite inference about signal networks. The composite inference comes from combining well structured Bayesian probabilistic modeling with a multi-faceted Markov Chain Monte Carlo algorithm. Based on simulations which investigate many different types of network interactions and experimental variabilities, the composite examination uncovers many important relationships within the networks. In particular, when the edge's partial correlation between two proteins is at least moderate, then the composite's posterior probability is large

    Enhancing Free-text Interactions in a Communication Skills Learning Environment

    Get PDF
    Learning environments frequently use gamification to enhance user interactions.Virtual characters with whom players engage in simulated conversations often employ prescripted dialogues; however, free user inputs enable deeper immersion and higher-order cognition. In our learning environment, experts developed a scripted scenario as a sequence of potential actions, and we explore possibilities for enhancing interactions by enabling users to type free inputs that are matched to the pre-scripted statements using Natural Language Processing techniques. In this paper, we introduce a clustering mechanism that provides recommendations for fine-tuning the pre-scripted answers in order to better match user inputs

    Continuous Cotemporal Probabilistic Modeling of Systems Biology Networks from Sparse Data

    No full text
    corecore