243 research outputs found

    Bifurcation of Nonlinear Bloch Waves from the Spectrum in the Gross-Pitaevskii Equation

    Get PDF
    We rigorously analyze the bifurcation of stationary so called nonlinear Bloch waves (NLBs) from the spectrum in the Gross-Pitaevskii (GP) equation with a periodic potential, in arbitrary space dimensions. These are solutions which can be expressed as finite sums of quasi-periodic functions, and which in a formal asymptotic expansion are obtained from solutions of the so called algebraic coupled mode equations. Here we justify this expansion by proving the existence of NLBs and estimating the error of the formal asymptotics. The analysis is illustrated by numerical bifurcation diagrams, mostly in 2D. In addition, we illustrate some relations of NLBs to other classes of solutions of the GP equation, in particular to so called out--of--gap solitons and truncated NLBs, and present some numerical experiments concerning the stability of these solutions.Comment: 32 pages, 12 figures, changes: discussion of assumptions reorganized, a new section on stability of the studied solutions, 15 new references adde

    Vortex families near a spectral edge in the Gross-Pitaevskii equation with a two-dimensional periodic potential

    Full text link
    We examine numerically vortex families near band edges of the Bloch wave spectrum in the Gross--Pitaevskii equation with a two-dimensional periodic potential and in the discrete nonlinear Schroedinger equation. We show that besides vortex families that terminate at a small distance from the band edges via fold bifurcations there exist vortex families that are continued all way to the band edges.Comment: 12 pages, 8 figure

    Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential

    Full text link
    We address a two-dimensional nonlinear elliptic problem with a finite-amplitude periodic potential. For a class of separable symmetric potentials, we study the bifurcation of the first band gap in the spectrum of the linear Schr\"{o}dinger operator and the relevant coupled-mode equations to describe this bifurcation. The coupled-mode equations are derived by the rigorous analysis based on the Fourier--Bloch decomposition and the Implicit Function Theorem in the space of bounded continuous functions vanishing at infinity. Persistence of reversible localized solutions, called gap solitons, beyond the coupled-mode equations is proved under a non-degeneracy assumption on the kernel of the linearization operator. Various branches of reversible localized solutions are classified numerically in the framework of the coupled-mode equations and convergence of the approximation error is verified. Error estimates on the time-dependent solutions of the Gross--Pitaevskii equation and the coupled-mode equations are obtained for a finite-time interval.Comment: 32 pages, 16 figure

    Nonlinear Schr\"odinger equation for a PT symmetric delta-functions double well

    Full text link
    The time-independent nonlinear Schr\"odinger equation is solved for two attractive delta-function shaped potential wells where an imaginary loss term is added in one well, and a gain term of the same size but with opposite sign in the other. We show that for vanishing nonlinearity the model captures all the features known from studies of PT symmetric optical wave guides, e.g., the coalescence of modes in an exceptional point at a critical value of the loss/gain parameter, and the breaking of PT symmetry beyond. With the nonlinearity present, the equation is a model for a Bose-Einstein condensate with loss and gain in a double well potential. We find that the nonlinear Hamiltonian picks as stationary eigenstates exactly such solutions which render the nonlinear Hamiltonian itself PT symmetric, but observe coalescence and bifurcation scenarios different from those known from linear PT symmetric Hamiltonians.Comment: 16 pages, 9 figures, to be published in Journal of Physics

    Quasiperiodic Dynamics in Bose-Einstein Condensates in Periodic Lattices and Superlattices

    Full text link
    We employ KAM theory to rigorously investigate quasiperiodic dynamics in cigar-shaped Bose-Einstein condensates (BEC) in periodic lattices and superlattices. Toward this end, we apply a coherent structure ansatz to the Gross-Pitaevskii equation to obtain a parametrically forced Duffing equation describing the spatial dynamics of the condensate. For shallow-well, intermediate-well, and deep-well potentials, we find KAM tori and Aubry-Mather sets to prove that one obtains mostly quasiperiodic dynamics for condensate wave functions of sufficiently large amplitude, where the minimal amplitude depends on the experimentally adjustable BEC parameters. We show that this threshold scales with the square root of the inverse of the two-body scattering length, whereas the rotation number of tori above this threshold is proportional to the amplitude. As a consequence, one obtains the same dynamical picture for lattices of all depths, as an increase in depth essentially only affects scaling in phase space. Our approach is applicable to periodic superlattices with an arbitrary number of rationally dependent wave numbers.Comment: 29 pages, 6 figures (several with multiple parts; higher-quality versions of some of them available at http://www.its.caltech.edu/~mason/papers), to appear very soon in Journal of Nonlinear Scienc

    Models of spin-orbit coupled oligomers

    Full text link
    We address the stability and dynamics of eigenmodes in linearly-shaped strings (dimers, trimers, tetramers, and pentamers) built of droplets of a binary Bose-Einstein condensate (BEC). The binary BEC is composed of atoms in two pseudo-spin states with attractive interactions, dressed by properly arranged laser fields, which induce the (pseudo-) spin-orbit (SO) coupling. We demonstrate that the SO-coupling terms help to create eigenmodes of particular types in the strings. Dimer, trimer, and pentamer eigenmodes of the linear system, which correspond to the zero eigenvalue (EV, alias chemical potential) extend into the nonlinear ones, keeping an exact analytical form, while tetramers do not admit such a continuation, because the respective spectrum does not contain a zero EV. Stability areas of these modes shrink with the increasing nonlinearity. Besides these modes, other types of nonlinear states, which are produced by the continuation of their linear counterparts corresponding to some nonzero EVs, are found in a numerical form (including ones for the tetramer system). They are stable in nearly entire existence regions in trimer and pentamer systems, but only in a very small area for the tetramers. Similar results are also obtained, but not displayed in detail, for hexa- and septamers.Comment: Chaos, in pres
    corecore