516,167 research outputs found
Complete contingency planners
A framework is proposed for the investigation of planning systems that must deal with bounded uncertainty. A definition of this new class of contingency planners is given. A general, complete contingency planning algorithm is described. The algorithm is suitable to many incomplete information games as well as planning situations where the initial state is only partially known. A rich domain is identified for the application and evaluation of contingency planners. Preliminary results from applying our complete contingency planner to a portion of this domain are encouraging and match expert level performance
Responsibility modelling for civil emergency planning
This paper presents a new approach to analysing and understanding civil emergency planning based on the notion of responsibility modelling combined with HAZOPS-style analysis of information requirements. Our goal is to represent complex contingency plans so that they can be more readily understood, so that inconsistencies can be highlighted and vulnerabilities discovered. In this paper, we outline the framework for contingency planning in the United Kingdom and introduce the notion of responsibility models as a means of representing the key features of contingency plans. Using a case study of a flooding emergency, we illustrate our approach to responsibility modelling and suggest how it adds value to current textual contingency plans
Contingency-Constrained Unit Commitment with Post-Contingency Corrective Recourse
We consider the problem of minimizing costs in the generation unit commitment
problem, a cornerstone in electric power system operations, while enforcing an
N-k-e reliability criterion. This reliability criterion is a generalization of
the well-known - criterion, and dictates that at least
fraction of the total system demand must be met following the failures of
or fewer system components. We refer to this problem as the
Contingency-Constrained Unit Commitment problem, or CCUC. We present a
mixed-integer programming formulation of the CCUC that accounts for both
transmission and generation element failures. We propose novel cutting plane
algorithms that avoid the need to explicitly consider an exponential number of
contingencies. Computational studies are performed on several IEEE test systems
and a simplified model of the Western US interconnection network, which
demonstrate the effectiveness of our proposed methods relative to current
state-of-the-art
Contingency and Necessity
This paper argues that the problem of how to act in the face of radical contingency is of central importance in Musil’s novel and intimately connected to what Musil calls the sense of possibility. There is a variety of different strategies by which individuals, and the state of Kakania as a whole, deal with contingency, and they all involve a claim to a kind of grounding or necessity; for example, the Parallel Campaign is one big attempt to ground Kakania in what can be perceived as a form of metaphysical necessity. With the figure of Ulrich, Musil radicalizes the problem by showing the consequences of viewing even the relationship one has to one’s own self as contingent – the ultimate outcome of which is self-alienation
Outcome contingency selectively affects the neural coding of outcomes but not of tasks
Value-based decision-making is ubiquitous in every-day life, and critically depends on the contingency between choices and their outcomes. Only if outcomes are contingent on our choices can we make meaningful value-based decisions. Here, we investigate the effect of outcome contingency on the neural coding of rewards and tasks. Participants performed a reversal-learning paradigm in which reward outcomes were contingent on trial-by-trial choices, and performed a ‘free choice’ paradigm in which rewards were random and not contingent on choices. We hypothesized that contingent outcomes enhance the neural coding of rewards and tasks, which was tested using multivariate pattern analysis of fMRI data. Reward outcomes were encoded in a large network including the striatum, dmPFC and parietal cortex, and these representations were indeed amplified for contingent rewards. Tasks were encoded in the dmPFC at the time of decision-making, and in parietal cortex in a subsequent maintenance phase. We found no evidence for contingency-dependent modulations of task signals, demonstrating highly similar coding across contingency conditions. Our findings suggest selective effects of contingency on reward coding only, and further highlight the role of dmPFC and parietal cortex in value-based decision-making, as these were the only regions strongly involved in both reward and task coding
The Geometry of Statistical Models for Two-Way Contingency Tables with Fixed Odds Ratios
We study the geometric structure of the statistical models for two-by-two
contingency tables. One or two odds ratios are fixed and the corresponding
models are shown to be a portion of a ruled quadratic surface or a segment.
Some pointers to the general case of two-way contingency tables are also given
and an application to case-control studies is presented.Comment: References were not displaying properly in the previous versio
Contingency Model Predictive Control for Automated Vehicles
We present Contingency Model Predictive Control (CMPC), a novel and
implementable control framework which tracks a desired path while
simultaneously maintaining a contingency plan -- an alternate trajectory to
avert an identified potential emergency. In this way, CMPC anticipates events
that might take place, instead of reacting when emergencies occur. We
accomplish this by adding an additional prediction horizon in parallel to the
classical receding MPC horizon. The contingency horizon is constrained to
maintain a feasible avoidance solution; as such, CMPC is selectively robust to
this emergency while tracking the desired path as closely as possible. After
defining the framework mathematically, we demonstrate its effectiveness
experimentally by comparing its performance to a state-of-the-art deterministic
MPC. The controllers drive an automated research platform through a left-hand
turn which may be covered by ice. Contingency MPC prepares for the potential
loss of friction by purposefully and intuitively deviating from the prescribed
path to approach the turn more conservatively; this deviation significantly
mitigates the consequence of encountering ice.Comment: American Control Conference, July 2019; 6 page
- …
