22,143 research outputs found

    CEDR: Contextualized Embeddings for Document Ranking

    Get PDF
    Although considerable attention has been given to neural ranking architectures recently, far less attention has been paid to the term representations that are used as input to these models. In this work, we investigate how two pretrained contextualized language models (ELMo and BERT) can be utilized for ad-hoc document ranking. Through experiments on TREC benchmarks, we find that several existing neural ranking architectures can benefit from the additional context provided by contextualized language models. Furthermore, we propose a joint approach that incorporates BERT's classification vector into existing neural models and show that it outperforms state-of-the-art ad-hoc ranking baselines. We call this joint approach CEDR (Contextualized Embeddings for Document Ranking). We also address practical challenges in using these models for ranking, including the maximum input length imposed by BERT and runtime performance impacts of contextualized language models.Comment: Appeared in SIGIR 2019, 4 page

    Deep Contextualized Acoustic Representations For Semi-Supervised Speech Recognition

    Full text link
    We propose a novel approach to semi-supervised automatic speech recognition (ASR). We first exploit a large amount of unlabeled audio data via representation learning, where we reconstruct a temporal slice of filterbank features from past and future context frames. The resulting deep contextualized acoustic representations (DeCoAR) are then used to train a CTC-based end-to-end ASR system using a smaller amount of labeled audio data. In our experiments, we show that systems trained on DeCoAR consistently outperform ones trained on conventional filterbank features, giving 42% and 19% relative improvement over the baseline on WSJ eval92 and LibriSpeech test-clean, respectively. Our approach can drastically reduce the amount of labeled data required; unsupervised training on LibriSpeech then supervision with 100 hours of labeled data achieves performance on par with training on all 960 hours directly. Pre-trained models and code will be released online.Comment: Accepted to ICASSP 2020 (oral

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc

    Stochastic Answer Networks for Machine Reading Comprehension

    Full text link
    We propose a simple yet robust stochastic answer network (SAN) that simulates multi-step reasoning in machine reading comprehension. Compared to previous work such as ReasoNet which used reinforcement learning to determine the number of steps, the unique feature is the use of a kind of stochastic prediction dropout on the answer module (final layer) of the neural network during the training. We show that this simple trick improves robustness and achieves results competitive to the state-of-the-art on the Stanford Question Answering Dataset (SQuAD), the Adversarial SQuAD, and the Microsoft MAchine Reading COmprehension Dataset (MS MARCO).Comment: 11 pages, 5 figures, Accepted to ACL 201

    Listening between the Lines: Learning Personal Attributes from Conversations

    Full text link
    Open-domain dialogue agents must be able to converse about many topics while incorporating knowledge about the user into the conversation. In this work we address the acquisition of such knowledge, for personalization in downstream Web applications, by extracting personal attributes from conversations. This problem is more challenging than the established task of information extraction from scientific publications or Wikipedia articles, because dialogues often give merely implicit cues about the speaker. We propose methods for inferring personal attributes, such as profession, age or family status, from conversations using deep learning. Specifically, we propose several Hidden Attribute Models, which are neural networks leveraging attention mechanisms and embeddings. Our methods are trained on a per-predicate basis to output rankings of object values for a given subject-predicate combination (e.g., ranking the doctor and nurse professions high when speakers talk about patients, emergency rooms, etc). Experiments with various conversational texts including Reddit discussions, movie scripts and a collection of crowdsourced personal dialogues demonstrate the viability of our methods and their superior performance compared to state-of-the-art baselines.Comment: published in WWW'1

    Alternative Weighting Schemes for ELMo Embeddings

    Full text link
    ELMo embeddings (Peters et. al, 2018) had a huge impact on the NLP community and may recent publications use these embeddings to boost the performance for downstream NLP tasks. However, integration of ELMo embeddings in existent NLP architectures is not straightforward. In contrast to traditional word embeddings, like GloVe or word2vec embeddings, the bi-directional language model of ELMo produces three 1024 dimensional vectors per token in a sentence. Peters et al. proposed to learn a task-specific weighting of these three vectors for downstream tasks. However, this proposed weighting scheme is not feasible for certain tasks, and, as we will show, it does not necessarily yield optimal performance. We evaluate different methods that combine the three vectors from the language model in order to achieve the best possible performance in downstream NLP tasks. We notice that the third layer of the published language model often decreases the performance. By learning a weighted average of only the first two layers, we are able to improve the performance for many datasets. Due to the reduced complexity of the language model, we have a training speed-up of 19-44% for the downstream task

    Telenovelas as a Tool for Teaching

    Get PDF
    corecore