9,773 research outputs found

    Neural Motifs: Scene Graph Parsing with Global Context

    Full text link
    We investigate the problem of producing structured graph representations of visual scenes. Our work analyzes the role of motifs: regularly appearing substructures in scene graphs. We present new quantitative insights on such repeated structures in the Visual Genome dataset. Our analysis shows that object labels are highly predictive of relation labels but not vice-versa. We also find that there are recurring patterns even in larger subgraphs: more than 50% of graphs contain motifs involving at least two relations. Our analysis motivates a new baseline: given object detections, predict the most frequent relation between object pairs with the given labels, as seen in the training set. This baseline improves on the previous state-of-the-art by an average of 3.6% relative improvement across evaluation settings. We then introduce Stacked Motif Networks, a new architecture designed to capture higher order motifs in scene graphs that further improves over our strong baseline by an average 7.1% relative gain. Our code is available at github.com/rowanz/neural-motifs.Comment: CVPR 2018 camera read

    Delving into Commit-Issue Correlation to Enhance Commit Message Generation Models

    Full text link
    Commit message generation (CMG) is a challenging task in automated software engineering that aims to generate natural language descriptions of code changes for commits. Previous methods all start from the modified code snippets, outputting commit messages through template-based, retrieval-based, or learning-based models. While these methods can summarize what is modified from the perspective of code, they struggle to provide reasons for the commit. The correlation between commits and issues that could be a critical factor for generating rational commit messages is still unexplored. In this work, we delve into the correlation between commits and issues from the perspective of dataset and methodology. We construct the first dataset anchored on combining correlated commits and issues. The dataset consists of an unlabeled commit-issue parallel part and a labeled part in which each example is provided with human-annotated rational information in the issue. Furthermore, we propose \tool (\underline{Ex}traction, \underline{Gro}unding, \underline{Fi}ne-tuning), a novel paradigm that can introduce the correlation between commits and issues into the training phase of models. To evaluate whether it is effective, we perform comprehensive experiments with various state-of-the-art CMG models. The results show that compared with the original models, the performance of \tool-enhanced models is significantly improved.Comment: ASE2023 accepted pape

    A study on the impact of pre-trained model on Just-In-Time defect prediction

    Full text link
    Previous researchers conducting Just-In-Time (JIT) defect prediction tasks have primarily focused on the performance of individual pre-trained models, without exploring the relationship between different pre-trained models as backbones. In this study, we build six models: RoBERTaJIT, CodeBERTJIT, BARTJIT, PLBARTJIT, GPT2JIT, and CodeGPTJIT, each with a distinct pre-trained model as its backbone. We systematically explore the differences and connections between these models. Specifically, we investigate the performance of the models when using Commit code and Commit message as inputs, as well as the relationship between training efficiency and model distribution among these six models. Additionally, we conduct an ablation experiment to explore the sensitivity of each model to inputs. Furthermore, we investigate how the models perform in zero-shot and few-shot scenarios. Our findings indicate that each model based on different backbones shows improvements, and when the backbone's pre-training model is similar, the training resources that need to be consumed are much more closer. We also observe that Commit code plays a significant role in defect detection, and different pre-trained models demonstrate better defect detection ability with a balanced dataset under few-shot scenarios. These results provide new insights for optimizing JIT defect prediction tasks using pre-trained models and highlight the factors that require more attention when constructing such models. Additionally, CodeGPTJIT and GPT2JIT achieved better performance than DeepJIT and CC2Vec on the two datasets respectively under 2000 training samples. These findings emphasize the effectiveness of transformer-based pre-trained models in JIT defect prediction tasks, especially in scenarios with limited training data

    Learning to Represent Patches

    Full text link
    Patch representation is crucial in automating various software engineering tasks, like determining patch accuracy or summarizing code changes. While recent research has employed deep learning for patch representation, focusing on token sequences or Abstract Syntax Trees (ASTs), they often miss the change's semantic intent and the context of modified lines. To bridge this gap, we introduce a novel method, Patcherizer. It delves into the intentions of context and structure, merging the surrounding code context with two innovative representations. These capture the intention in code changes and the intention in AST structural modifications pre and post-patch. This holistic representation aptly captures a patch's underlying intentions. Patcherizer employs graph convolutional neural networks for structural intention graph representation and transformers for intention sequence representation. We evaluated Patcherizer's embeddings' versatility in three areas: (1) Patch description generation, (2) Patch accuracy prediction, and (3) Patch intention identification. Our experiments demonstrate the representation's efficacy across all tasks, outperforming state-of-the-art methods. For example, in patch description generation, Patcherizer excels, showing an average boost of 19.39% in BLEU, 8.71% in ROUGE-L, and 34.03% in METEOR scores

    A Full-fledged Commit Message Quality Checker Based on Machine Learning

    Full text link
    Commit messages (CMs) are an essential part of version control. By providing important context in regard to what has changed and why, they strongly support software maintenance and evolution. But writing good CMs is difficult and often neglected by developers. So far, there is no tool suitable for practice that automatically assesses how well a CM is written, including its meaning and context. Since this task is challenging, we ask the research question: how well can the CM quality, including semantics and context, be measured with machine learning methods? By considering all rules from the most popular CM quality guideline, creating datasets for those rules, and training and evaluating state-of-the-art machine learning models to check those rules, we can answer the research question with: sufficiently well for practice, with the lowest F1_1 score of 82.9\%, for the most challenging task. We develop a full-fledged open-source framework that checks all these CM quality rules. It is useful for research, e.g., automatic CM generation, but most importantly for software practitioners to raise the quality of CMs and thus the maintainability and evolution speed of their software.Comment: published at COMPSAC'2

    Organization and Usage of Learning Objects within Personal Computers

    Get PDF
    Research report of the ProLearn Network of Excellence (IST 507310), Deliverable 7.6To promote the integration of Desktop related Knowledge Management and Technology Enhanced Learning this deliverable aims at increasing the awareness of Desktop research within the Professional Learning community and at familiarizing the e-Learning researchers with the state-of-the-art in the relevant areas of Personal Information Management (PIM), as well as with the currently on-going activities and some of the regular PIM publication venues
    corecore