1,178 research outputs found

    Optimal No-regret Learning in Repeated First-price Auctions

    Full text link
    We study online learning in repeated first-price auctions with censored feedback, where a bidder, only observing the winning bid at the end of each auction, learns to adaptively bid in order to maximize her cumulative payoff. To achieve this goal, the bidder faces a challenging dilemma: if she wins the bid--the only way to achieve positive payoffs--then she is not able to observe the highest bid of the other bidders, which we assume is iid drawn from an unknown distribution. This dilemma, despite being reminiscent of the exploration-exploitation trade-off in contextual bandits, cannot directly be addressed by the existing UCB or Thompson sampling algorithms in that literature, mainly because contrary to the standard bandits setting, when a positive reward is obtained here, nothing about the environment can be learned. In this paper, by exploiting the structural properties of first-price auctions, we develop the first learning algorithm that achieves O(Tlog2T)O(\sqrt{T}\log^2 T) regret bound when the bidder's private values are stochastically generated. We do so by providing an algorithm on a general class of problems, which we call monotone group contextual bandits, where the same regret bound is established under stochastically generated contexts. Further, by a novel lower bound argument, we characterize an Ω(T2/3)\Omega(T^{2/3}) lower bound for the case where the contexts are adversarially generated, thus highlighting the impact of the contexts generation mechanism on the fundamental learning limit. Despite this, we further exploit the structure of first-price auctions and develop a learning algorithm that operates sample-efficiently (and computationally efficiently) in the presence of adversarially generated private values. We establish an O(Tlog3T)O(\sqrt{T}\log^3 T) regret bound for this algorithm, hence providing a complete characterization of optimal learning guarantees for this problem

    A dynamic pricing model for unifying programmatic guarantee and real-time bidding in display advertising

    Full text link
    There are two major ways of selling impressions in display advertising. They are either sold in spot through auction mechanisms or in advance via guaranteed contracts. The former has achieved a significant automation via real-time bidding (RTB); however, the latter is still mainly done over the counter through direct sales. This paper proposes a mathematical model that allocates and prices the future impressions between real-time auctions and guaranteed contracts. Under conventional economic assumptions, our model shows that the two ways can be seamless combined programmatically and the publisher's revenue can be maximized via price discrimination and optimal allocation. We consider advertisers are risk-averse, and they would be willing to purchase guaranteed impressions if the total costs are less than their private values. We also consider that an advertiser's purchase behavior can be affected by both the guaranteed price and the time interval between the purchase time and the impression delivery date. Our solution suggests an optimal percentage of future impressions to sell in advance and provides an explicit formula to calculate at what prices to sell. We find that the optimal guaranteed prices are dynamic and are non-decreasing over time. We evaluate our method with RTB datasets and find that the model adopts different strategies in allocation and pricing according to the level of competition. From the experiments we find that, in a less competitive market, lower prices of the guaranteed contracts will encourage the purchase in advance and the revenue gain is mainly contributed by the increased competition in future RTB. In a highly competitive market, advertisers are more willing to purchase the guaranteed contracts and thus higher prices are expected. The revenue gain is largely contributed by the guaranteed selling.Comment: Chen, Bowei and Yuan, Shuai and Wang, Jun (2014) A dynamic pricing model for unifying programmatic guarantee and real-time bidding in display advertising. In: The Eighth International Workshop on Data Mining for Online Advertising, 24 - 27 August 2014, New York Cit
    corecore