1,496 research outputs found

    Contextual Bandits with Random Projection

    Full text link
    Contextual bandits with linear payoffs, which are also known as linear bandits, provide a powerful alternative for solving practical problems of sequential decisions, e.g., online advertisements. In the era of big data, contextual data usually tend to be high-dimensional, which leads to new challenges for traditional linear bandits mostly designed for the setting of low-dimensional contextual data. Due to the curse of dimensionality, there are two challenges in most of the current bandit algorithms: the first is high time-complexity; and the second is extreme large upper regret bounds with high-dimensional data. In this paper, in order to attack the above two challenges effectively, we develop an algorithm of Contextual Bandits via RAndom Projection (\texttt{CBRAP}) in the setting of linear payoffs, which works especially for high-dimensional contextual data. The proposed \texttt{CBRAP} algorithm is time-efficient and flexible, because it enables players to choose an arm in a low-dimensional space, and relaxes the sparsity assumption of constant number of non-zero components in previous work. Besides, we provide a linear upper regret bound for the proposed algorithm, which is associated with reduced dimensions

    Contextual Dueling Bandits

    Full text link
    We consider the problem of learning to choose actions using contextual information when provided with limited feedback in the form of relative pairwise comparisons. We study this problem in the dueling-bandits framework of Yue et al. (2009), which we extend to incorporate context. Roughly, the learner's goal is to find the best policy, or way of behaving, in some space of policies, although "best" is not always so clearly defined. Here, we propose a new and natural solution concept, rooted in game theory, called a von Neumann winner, a randomized policy that beats or ties every other policy. We show that this notion overcomes important limitations of existing solutions, particularly the Condorcet winner which has typically been used in the past, but which requires strong and often unrealistic assumptions. We then present three efficient algorithms for online learning in our setting, and for approximating a von Neumann winner from batch-like data. The first of these algorithms achieves particularly low regret, even when data is adversarial, although its time and space requirements are linear in the size of the policy space. The other two algorithms require time and space only logarithmic in the size of the policy space when provided access to an oracle for solving classification problems on the space.Comment: 25 pages, 4 figures, Published at COLT 201

    Semiparametric Contextual Bandits

    Full text link
    This paper studies semiparametric contextual bandits, a generalization of the linear stochastic bandit problem where the reward for an action is modeled as a linear function of known action features confounded by an non-linear action-independent term. We design new algorithms that achieve O~(dT)\tilde{O}(d\sqrt{T}) regret over TT rounds, when the linear function is dd-dimensional, which matches the best known bounds for the simpler unconfounded case and improves on a recent result of Greenewald et al. (2017). Via an empirical evaluation, we show that our algorithms outperform prior approaches when there are non-linear confounding effects on the rewards. Technically, our algorithms use a new reward estimator inspired by doubly-robust approaches and our proofs require new concentration inequalities for self-normalized martingales

    CONQUER: Confusion Queried Online Bandit Learning

    Full text link
    We present a new recommendation setting for picking out two items from a given set to be highlighted to a user, based on contextual input. These two items are presented to a user who chooses one of them, possibly stochastically, with a bias that favours the item with the higher value. We propose a second-order algorithm framework that members of it use uses relative upper-confidence bounds to trade off exploration and exploitation, and some explore via sampling. We analyze one algorithm in this framework in an adversarial setting with only mild assumption on the data, and prove a regret bound of O(QT+TQTlogT+TlogT)O(Q_T + \sqrt{TQ_T\log T} + \sqrt{T}\log T), where TT is the number of rounds and QTQ_T is the cumulative approximation error of item values using a linear model. Experiments with product reviews from 33 domains show the advantage of our methods over algorithms designed for related settings, and that UCB based algorithms are inferior to greed or sampling based algorithms

    An efficient algorithm for contextual bandits with knapsacks, and an extension to concave objectives

    Full text link
    We consider a contextual version of multi-armed bandit problem with global knapsack constraints. In each round, the outcome of pulling an arm is a scalar reward and a resource consumption vector, both dependent on the context, and the global knapsack constraints require the total consumption for each resource to be below some pre-fixed budget. The learning agent competes with an arbitrary set of context-dependent policies. This problem was introduced by Badanidiyuru et al. (2014), who gave a computationally inefficient algorithm with near-optimal regret bounds for it. We give a computationally efficient algorithm for this problem with slightly better regret bounds, by generalizing the approach of Agarwal et al. (2014) for the non-constrained version of the problem. The computational time of our algorithm scales logarithmically in the size of the policy space. This answers the main open question of Badanidiyuru et al. (2014). We also extend our results to a variant where there are no knapsack constraints but the objective is an arbitrary Lipschitz concave function of the sum of outcome vectors.Comment: Extended abstract appeared in COLT 201

    Scalable Generalized Linear Bandits: Online Computation and Hashing

    Full text link
    Generalized Linear Bandits (GLBs), a natural extension of the stochastic linear bandits, has been popular and successful in recent years. However, existing GLBs scale poorly with the number of rounds and the number of arms, limiting their utility in practice. This paper proposes new, scalable solutions to the GLB problem in two respects. First, unlike existing GLBs, whose per-time-step space and time complexity grow at least linearly with time tt, we propose a new algorithm that performs online computations to enjoy a constant space and time complexity. At its heart is a novel Generalized Linear extension of the Online-to-confidence-set Conversion (GLOC method) that takes \emph{any} online learning algorithm and turns it into a GLB algorithm. As a special case, we apply GLOC to the online Newton step algorithm, which results in a low-regret GLB algorithm with much lower time and memory complexity than prior work. Second, for the case where the number NN of arms is very large, we propose new algorithms in which each next arm is selected via an inner product search. Such methods can be implemented via hashing algorithms (i.e., "hash-amenable") and result in a time complexity sublinear in NN. While a Thompson sampling extension of GLOC is hash-amenable, its regret bound for dd-dimensional arm sets scales with d3/2d^{3/2}, whereas GLOC's regret bound scales with dd. Towards closing this gap, we propose a new hash-amenable algorithm whose regret bound scales with d5/4d^{5/4}. Finally, we propose a fast approximate hash-key computation (inner product) with a better accuracy than the state-of-the-art, which can be of independent interest. We conclude the paper with preliminary experimental results confirming the merits of our methods.Comment: accepted to NIPS'17 (typos fixed

    BISTRO: An Efficient Relaxation-Based Method for Contextual Bandits

    Full text link
    We present efficient algorithms for the problem of contextual bandits with i.i.d. covariates, an arbitrary sequence of rewards, and an arbitrary class of policies. Our algorithm BISTRO requires d calls to the empirical risk minimization (ERM) oracle per round, where d is the number of actions. The method uses unlabeled data to make the problem computationally simple. When the ERM problem itself is computationally hard, we extend the approach by employing multiplicative approximation algorithms for the ERM. The integrality gap of the relaxation only enters in the regret bound rather than the benchmark. Finally, we show that the adversarial version of the contextual bandit problem is learnable (and efficient) whenever the full-information supervised online learning problem has a non-trivial regret guarantee (and efficient)

    Multi-Objective Generalized Linear Bandits

    Full text link
    In this paper, we study the multi-objective bandits (MOB) problem, where a learner repeatedly selects one arm to play and then receives a reward vector consisting of multiple objectives. MOB has found many real-world applications as varied as online recommendation and network routing. On the other hand, these applications typically contain contextual information that can guide the learning process which, however, is ignored by most of existing work. To utilize this information, we associate each arm with a context vector and assume the reward follows the generalized linear model (GLM). We adopt the notion of Pareto regret to evaluate the learner's performance and develop a novel algorithm for minimizing it. The essential idea is to apply a variant of the online Newton step to estimate model parameters, based on which we utilize the upper confidence bound (UCB) policy to construct an approximation of the Pareto front, and then uniformly at random choose one arm from the approximate Pareto front. Theoretical analysis shows that the proposed algorithm achieves an O~(dT)\tilde O(d\sqrt{T}) Pareto regret, where TT is the time horizon and dd is the dimension of contexts, which matches the optimal result for single objective contextual bandits problem. Numerical experiments demonstrate the effectiveness of our method

    Off-policy evaluation for slate recommendation

    Full text link
    This paper studies the evaluation of policies that recommend an ordered set of items (e.g., a ranking) based on some context---a common scenario in web search, ads, and recommendation. We build on techniques from combinatorial bandits to introduce a new practical estimator that uses logged data to estimate a policy's performance. A thorough empirical evaluation on real-world data reveals that our estimator is accurate in a variety of settings, including as a subroutine in a learning-to-rank task, where it achieves competitive performance. We derive conditions under which our estimator is unbiased---these conditions are weaker than prior heuristics for slate evaluation---and experimentally demonstrate a smaller bias than parametric approaches, even when these conditions are violated. Finally, our theory and experiments also show exponential savings in the amount of required data compared with general unbiased estimators.Comment: 31 pages (9 main paper, 20 supplementary), 12 figures (2 main paper, 10 supplementary

    Provably Optimal Algorithms for Generalized Linear Contextual Bandits

    Full text link
    Contextual bandits are widely used in Internet services from news recommendation to advertising, and to Web search. Generalized linear models (logistical regression in particular) have demonstrated stronger performance than linear models in many applications where rewards are binary. However, most theoretical analyses on contextual bandits so far are on linear bandits. In this work, we propose an upper confidence bound based algorithm for generalized linear contextual bandits, which achieves an O~(dT)\tilde{O}(\sqrt{dT}) regret over TT rounds with dd dimensional feature vectors. This regret matches the minimax lower bound, up to logarithmic terms, and improves on the best previous result by a d\sqrt{d} factor, assuming the number of arms is fixed. A key component in our analysis is to establish a new, sharp finite-sample confidence bound for maximum-likelihood estimates in generalized linear models, which may be of independent interest. We also analyze a simpler upper confidence bound algorithm, which is useful in practice, and prove it to have optimal regret for certain cases.Comment: Published at ICML 201
    corecore