1,357,475 research outputs found
Network layer access control for context-aware IPv6 applications
As part of the Lancaster GUIDE II project, we have developed a novel wireless access point protocol designed to support the development of next generation mobile context-aware applications in our local environs. Once deployed, this architecture will allow ordinary citizens secure, accountable and convenient access to a set of tailored applications including location, multimedia and context based services, and the public Internet. Our architecture utilises packet marking and network level packet filtering techniques within a modified Mobile IPv6 protocol stack to perform access control over a range of wireless network technologies. In this paper, we describe the rationale for, and components of, our architecture and contrast our approach with other state-of-the- art systems. The paper also contains details of our current implementation work, including preliminary performance measurements
ConXsense - Automated Context Classification for Context-Aware Access Control
We present ConXsense, the first framework for context-aware access control on
mobile devices based on context classification. Previous context-aware access
control systems often require users to laboriously specify detailed policies or
they rely on pre-defined policies not adequately reflecting the true
preferences of users. We present the design and implementation of a
context-aware framework that uses a probabilistic approach to overcome these
deficiencies. The framework utilizes context sensing and machine learning to
automatically classify contexts according to their security and privacy-related
properties. We apply the framework to two important smartphone-related use
cases: protection against device misuse using a dynamic device lock and
protection against sensory malware. We ground our analysis on a sociological
survey examining the perceptions and concerns of users related to contextual
smartphone security and analyze the effectiveness of our approach with
real-world context data. We also demonstrate the integration of our framework
with the FlaskDroid architecture for fine-grained access control enforcement on
the Android platform.Comment: Recipient of the Best Paper Awar
Dynamic deployment of context-aware access control policies for constrained security devices
Securing the access to a server, guaranteeing a certain level of protection over an encrypted communication channel, executing particular counter measures when attacks are detected are examples of security requirements. Such requirements are identi ed based on organizational purposes and expectations in terms of resource access and availability and also on system vulnerabilities and threats. All these requirements belong to the so-called security policy. Deploying the policy means enforcing, i.e., con guring, those security components and mechanisms so that the system behavior be nally the one speci ed by the policy. The deployment issue becomes more di cult as the growing organizational requirements and expectations generally leave behind the integration of new security functionalities in the information system: the information system will not always embed the necessary security functionalities for the proper deployment of contextual security requirements. To overcome this issue, our solution is based on a central entity approach which takes in charge unmanaged contextual requirements and dynamically redeploys the policy when context changes are detected by this central entity. We also present an improvement over the OrBAC (Organization-Based Access Control) model. Up to now, a controller based on a contextual OrBAC policy is passive, in the sense that it assumes policy evaluation triggered by access requests. Therefore, it does not allow reasoning about policy state evolution when actions occur. The modi cations introduced by our work overcome this limitation and provide a proactive version of the model by integrating concepts from action speci cation languages
Context-Aware Access Control Model for Cloud Computing
In view of malicious insider attacks on cloud computing environments, a new Context-Aware Access Control Model for cloud computing (CAACM) was presented. According to the characteristic of cloud computing, we take spatial state, temporal state and platform trust level as context. The model establishes mechanisms of authorization from cloud management role to objects, which enables dynamic activation of role permission by associating cloud management role with context. It also achieves fine-grained access control on cloud objects by supervising the permission of management role in full life cycle. Moreover, it introduces the concept of exclusive managerial role, which extends access control from static protection on resources to dynamic authorization on managerial roles. Further, it describes the approach of role permission activation systematically. CAACM formally proves to be safe and it lays the groundwork for the deployment of CAACM in cloud computing systems
On trust and privacy in context-aware systems
Recent advances in networking, handheld computing and sensors technologies have led to the emergence of context-aware systems. The vast amounts of personal information collected by such systems has led to growing concerns about the privacy of their users. Users concerned about their private information are likely to refuse participation in such systems. Therefore, it is quite clear that for any context-aware system to be acceptable by the users, mechanisms for controlling access to personal information are a necessity. According to Alan Westin "privacy is the claim of individuals, groups, or institutions to determine for themselves when, how and to what extent information is communicated to others"1. Within this context we can classify users as either information owners or information receivers. It is also acknowledged that information owners are willing to disclose personal information if this disclosure is potentially beneficial. So, the acceptance of any context-aware system depends on the provision of mechanisms for fine-grained control of the disclosure of personal information incorporating an explicit notion of benefit
- …
