13 research outputs found

    Efficient Deep Reinforcement Learning via Adaptive Policy Transfer

    Full text link
    Transfer Learning (TL) has shown great potential to accelerate Reinforcement Learning (RL) by leveraging prior knowledge from past learned policies of relevant tasks. Existing transfer approaches either explicitly computes the similarity between tasks or select appropriate source policies to provide guided explorations for the target task. However, how to directly optimize the target policy by alternatively utilizing knowledge from appropriate source policies without explicitly measuring the similarity is currently missing. In this paper, we propose a novel Policy Transfer Framework (PTF) to accelerate RL by taking advantage of this idea. Our framework learns when and which source policy is the best to reuse for the target policy and when to terminate it by modeling multi-policy transfer as the option learning problem. PTF can be easily combined with existing deep RL approaches. Experimental results show it significantly accelerates the learning process and surpasses state-of-the-art policy transfer methods in terms of learning efficiency and final performance in both discrete and continuous action spaces.Comment: Accepted by IJCAI'202

    IOB: Integrating Optimization Transfer and Behavior Transfer for Multi-Policy Reuse

    Full text link
    Humans have the ability to reuse previously learned policies to solve new tasks quickly, and reinforcement learning (RL) agents can do the same by transferring knowledge from source policies to a related target task. Transfer RL methods can reshape the policy optimization objective (optimization transfer) or influence the behavior policy (behavior transfer) using source policies. However, selecting the appropriate source policy with limited samples to guide target policy learning has been a challenge. Previous methods introduce additional components, such as hierarchical policies or estimations of source policies' value functions, which can lead to non-stationary policy optimization or heavy sampling costs, diminishing transfer effectiveness. To address this challenge, we propose a novel transfer RL method that selects the source policy without training extra components. Our method utilizes the Q function in the actor-critic framework to guide policy selection, choosing the source policy with the largest one-step improvement over the current target policy. We integrate optimization transfer and behavior transfer (IOB) by regularizing the learned policy to mimic the guidance policy and combining them as the behavior policy. This integration significantly enhances transfer effectiveness, surpasses state-of-the-art transfer RL baselines in benchmark tasks, and improves final performance and knowledge transferability in continual learning scenarios. Additionally, we show that our optimization transfer technique is guaranteed to improve target policy learning.Comment: 26 pages, 9 figure

    Efficient Bayesian Policy Reuse with a Scalable Observation Model in Deep Reinforcement Learning

    Full text link
    Bayesian policy reuse (BPR) is a general policy transfer framework for selecting a source policy from an offline library by inferring the task belief based on some observation signals and a trained observation model. In this paper, we propose an improved BPR method to achieve more efficient policy transfer in deep reinforcement learning (DRL). First, most BPR algorithms use the episodic return as the observation signal that contains limited information and cannot be obtained until the end of an episode. Instead, we employ the state transition sample, which is informative and instantaneous, as the observation signal for faster and more accurate task inference. Second, BPR algorithms usually require numerous samples to estimate the probability distribution of the tabular-based observation model, which may be expensive and even infeasible to learn and maintain, especially when using the state transition sample as the signal. Hence, we propose a scalable observation model based on fitting state transition functions of source tasks from only a small number of samples, which can generalize to any signals observed in the target task. Moreover, we extend the offline-mode BPR to the continual learning setting by expanding the scalable observation model in a plug-and-play fashion, which can avoid negative transfer when faced with new unknown tasks. Experimental results show that our method can consistently facilitate faster and more efficient policy transfer.Comment: 16 pages, 6 figures, under revie

    MULTIPOLAR: Multi-Source Policy Aggregation for Transfer Reinforcement Learning between Diverse Environmental Dynamics

    Full text link
    Transfer reinforcement learning (RL) aims at improving the learning efficiency of an agent by exploiting knowledge from other source agents trained on relevant tasks. However, it remains challenging to transfer knowledge between different environmental dynamics without having access to the source environments. In this work, we explore a new challenge in transfer RL, where only a set of source policies collected under diverse unknown dynamics is available for learning a target task efficiently. To address this problem, the proposed approach, MULTI-source POLicy AggRegation (MULTIPOLAR), comprises two key techniques. We learn to aggregate the actions provided by the source policies adaptively to maximize the target task performance. Meanwhile, we learn an auxiliary network that predicts residuals around the aggregated actions, which ensures the target policy's expressiveness even when some of the source policies perform poorly. We demonstrated the effectiveness of MULTIPOLAR through an extensive experimental evaluation across six simulated environments ranging from classic control problems to challenging robotics simulations, under both continuous and discrete action spaces. The demo videos and code are available on the project webpage: https://omron-sinicx.github.io/multipolar/.Comment: This work was presented at IJCAI 2020. Copyright (c) 2020 International Joint Conferences on Artificial Intelligence, All rights reserve

    EASpace: Enhanced Action Space for Policy Transfer

    Full text link
    Formulating expert policies as macro actions promises to alleviate the long-horizon issue via structured exploration and efficient credit assignment. However, traditional option-based multi-policy transfer methods suffer from inefficient exploration of macro action's length and insufficient exploitation of useful long-duration macro actions. In this paper, a novel algorithm named EASpace (Enhanced Action Space) is proposed, which formulates macro actions in an alternative form to accelerate the learning process using multiple available sub-optimal expert policies. Specifically, EASpace formulates each expert policy into multiple macro actions with different execution {times}. All the macro actions are then integrated into the primitive action space directly. An intrinsic reward, which is proportional to the execution time of macro actions, is introduced to encourage the exploitation of useful macro actions. The corresponding learning rule that is similar to Intra-option Q-learning is employed to improve the data efficiency. Theoretical analysis is presented to show the convergence of the proposed learning rule. The efficiency of EASpace is illustrated by a grid-based game and a multi-agent pursuit problem. The proposed algorithm is also implemented in physical systems to validate its effectiveness.Comment: 15 Page
    corecore