6 research outputs found

    Image embedding and user multi-preference modeling for data collection sampling

    Get PDF
    This work proposes an end-to-end user-centric sampling method aimed at selecting the images from an image collection that are able to maximize the information perceived by a given user. As main contributions, we first introduce novel metrics that assess the amount of perceived information retained by the user when experiencing a set of images. Given the actual information present in a set of images, which is the volume spanned by the set in the corresponding latent space, we show how to take into account the user’s preferences in such a volume calculation to build a user-centric metric for the perceived information. Finally, we propose a sampling strategy seeking the minimum set of images that maximize the information perceived by a given user. Experiments using the coco dataset show the ability of the proposed approach to accurately integrate user preference while keeping a reasonable diversity in the sampled image set

    Visual Commonsense based Heterogeneous Graph Contrastive Learning

    Full text link
    How to select relevant key objects and reason about the complex relationships cross vision and linguistic domain are two key issues in many multi-modality applications such as visual question answering (VQA). In this work, we incorporate the visual commonsense information and propose a heterogeneous graph contrastive learning method to better finish the visual reasoning task. Our method is designed as a plug-and-play way, so that it can be quickly and easily combined with a wide range of representative methods. Specifically, our model contains two key components: the Commonsense-based Contrastive Learning and the Graph Relation Network. Using contrastive learning, we guide the model concentrate more on discriminative objects and relevant visual commonsense attributes. Besides, thanks to the introduction of the Graph Relation Network, the model reasons about the correlations between homogeneous edges and the similarities between heterogeneous edges, which makes information transmission more effective. Extensive experiments on four benchmarks show that our method greatly improves seven representative VQA models, demonstrating its effectiveness and generalizability

    Rethinking the Reference-based Distinctive Image Captioning

    Full text link
    Distinctive Image Captioning (DIC) -- generating distinctive captions that describe the unique details of a target image -- has received considerable attention over the last few years. A recent DIC work proposes to generate distinctive captions by comparing the target image with a set of semantic-similar reference images, i.e., reference-based DIC (Ref-DIC). It aims to make the generated captions can tell apart the target and reference images. Unfortunately, reference images used by existing Ref-DIC works are easy to distinguish: these reference images only resemble the target image at scene-level and have few common objects, such that a Ref-DIC model can trivially generate distinctive captions even without considering the reference images. To ensure Ref-DIC models really perceive the unique objects (or attributes) in target images, we first propose two new Ref-DIC benchmarks. Specifically, we design a two-stage matching mechanism, which strictly controls the similarity between the target and reference images at object-/attribute- level (vs. scene-level). Secondly, to generate distinctive captions, we develop a strong Transformer-based Ref-DIC baseline, dubbed as TransDIC. It not only extracts visual features from the target image, but also encodes the differences between objects in the target and reference images. Finally, for more trustworthy benchmarking, we propose a new evaluation metric named DisCIDEr for Ref-DIC, which evaluates both the accuracy and distinctiveness of the generated captions. Experimental results demonstrate that our TransDIC can generate distinctive captions. Besides, it outperforms several state-of-the-art models on the two new benchmarks over different metrics.Comment: ACM MM 202
    corecore