10,748 research outputs found

    Context-Aware Dialog Re-Ranking for Task-Oriented Dialog Systems

    Full text link
    Dialog response ranking is used to rank response candidates by considering their relation to the dialog history. Although researchers have addressed this concept for open-domain dialogs, little attention has been focused on task-oriented dialogs. Furthermore, no previous studies have analyzed whether response ranking can improve the performance of existing dialog systems in real human-computer dialogs with speech recognition errors. In this paper, we propose a context-aware dialog response re-ranking system. Our system reranks responses in two steps: (1) it calculates matching scores for each candidate response and the current dialog context; (2) it combines the matching scores and a probability distribution of the candidates from an existing dialog system for response re-ranking. By using neural word embedding-based models and handcrafted or logistic regression-based ensemble models, we have improved the performance of a recently proposed end-to-end task-oriented dialog system on real dialogs with speech recognition errors.Comment: Accepted in IEEE SLT 2018. 8 pages, 3 figure

    ConveRT: Efficient and Accurate Conversational Representations from Transformers

    Full text link
    General-purpose pretrained sentence encoders such as BERT are not ideal for real-world conversational AI applications; they are computationally heavy, slow, and expensive to train. We propose ConveRT (Conversational Representations from Transformers), a pretraining framework for conversational tasks satisfying all the following requirements: it is effective, affordable, and quick to train. We pretrain using a retrieval-based response selection task, effectively leveraging quantization and subword-level parameterization in the dual encoder to build a lightweight memory- and energy-efficient model. We show that ConveRT achieves state-of-the-art performance across widely established response selection tasks. We also demonstrate that the use of extended dialog history as context yields further performance gains. Finally, we show that pretrained representations from the proposed encoder can be transferred to the intent classification task, yielding strong results across three diverse data sets. ConveRT trains substantially faster than standard sentence encoders or previous state-of-the-art dual encoders. With its reduced size and superior performance, we believe this model promises wider portability and scalability for Conversational AI applications

    A Survey on Dialogue Systems: Recent Advances and New Frontiers

    Full text link
    Dialogue systems have attracted more and more attention. Recent advances on dialogue systems are overwhelmingly contributed by deep learning techniques, which have been employed to enhance a wide range of big data applications such as computer vision, natural language processing, and recommender systems. For dialogue systems, deep learning can leverage a massive amount of data to learn meaningful feature representations and response generation strategies, while requiring a minimum amount of hand-crafting. In this article, we give an overview to these recent advances on dialogue systems from various perspectives and discuss some possible research directions. In particular, we generally divide existing dialogue systems into task-oriented and non-task-oriented models, then detail how deep learning techniques help them with representative algorithms and finally discuss some appealing research directions that can bring the dialogue system research into a new frontier.Comment: 13 pages. arXiv admin note: text overlap with arXiv:1703.01008 by other author

    Multi-step Reasoning via Recurrent Dual Attention for Visual Dialog

    Full text link
    This paper presents a new model for visual dialog, Recurrent Dual Attention Network (ReDAN), using multi-step reasoning to answer a series of questions about an image. In each question-answering turn of a dialog, ReDAN infers the answer progressively through multiple reasoning steps. In each step of the reasoning process, the semantic representation of the question is updated based on the image and the previous dialog history, and the recurrently-refined representation is used for further reasoning in the subsequent step. On the VisDial v1.0 dataset, the proposed ReDAN model achieves a new state-of-the-art of 64.47% NDCG score. Visualization on the reasoning process further demonstrates that ReDAN can locate context-relevant visual and textual clues via iterative refinement, which can lead to the correct answer step-by-step.Comment: Accepted to ACL 201

    DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset

    Full text link
    We develop a high-quality multi-turn dialog dataset, DailyDialog, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems.Comment: accepted by IJCNLP 201

    Learning Personalized End-to-End Goal-Oriented Dialog

    Full text link
    Most existing works on dialog systems only consider conversation content while neglecting the personality of the user the bot is interacting with, which begets several unsolved issues. In this paper, we present a personalized end-to-end model in an attempt to leverage personalization in goal-oriented dialogs. We first introduce a Profile Model which encodes user profiles into distributed embeddings and refers to conversation history from other similar users. Then a Preference Model captures user preferences over knowledge base entities to handle the ambiguity in user requests. The two models are combined into the Personalized MemN2N. Experiments show that the proposed model achieves qualitative performance improvements over state-of-the-art methods. As for human evaluation, it also outperforms other approaches in terms of task completion rate and user satisfaction.Comment: Accepted by AAAI 201

    Incorporating Loose-Structured Knowledge into Conversation Modeling via Recall-Gate LSTM

    Full text link
    Modeling human conversations is the essence for building satisfying chat-bots with multi-turn dialog ability. Conversation modeling will notably benefit from domain knowledge since the relationships between sentences can be clarified due to semantic hints introduced by knowledge. In this paper, a deep neural network is proposed to incorporate background knowledge for conversation modeling. Through a specially designed Recall gate, domain knowledge can be transformed into the extra global memory of Long Short-Term Memory (LSTM), so as to enhance LSTM by cooperating with its local memory to capture the implicit semantic relevance between sentences within conversations. In addition, this paper introduces the loose structured domain knowledge base, which can be built with slight amount of manual work and easily adopted by the Recall gate. Our model is evaluated on the context-oriented response selecting task, and experimental results on both two datasets have shown that our approach is promising for modeling human conversations and building key components of automatic chatting systems.Comment: under review of IJCNN 2017; 10 pages, 5 figure

    A Survey of Document Grounded Dialogue Systems (DGDS)

    Full text link
    Dialogue system (DS) attracts great attention from industry and academia because of its wide application prospects. Researchers usually divide the DS according to the function. However, many conversations require the DS to switch between different functions. For example, movie discussion can change from chit-chat to QA, the conversational recommendation can transform from chit-chat to recommendation, etc. Therefore, classification according to functions may not be enough to help us appreciate the current development trend. We classify the DS based on background knowledge. Specifically, study the latest DS based on the unstructured document(s). We define Document Grounded Dialogue System (DGDS) as the DS that the dialogues are centering on the given document(s). The DGDS can be used in scenarios such as talking over merchandise against product Manual, commenting on news reports, etc. We believe that extracting unstructured document(s) information is the future trend of the DS because a great amount of human knowledge lies in these document(s). The research of the DGDS not only possesses a broad application prospect but also facilitates AI to better understand human knowledge and natural language. We analyze the classification, architecture, datasets, models, and future development trends of the DGDS, hoping to help researchers in this field.Comment: 30 pages, 4 figures, 13 table

    Towards Coherent and Engaging Spoken Dialog Response Generation Using Automatic Conversation Evaluators

    Full text link
    Encoder-decoder based neural architectures serve as the basis of state-of-the-art approaches in end-to-end open domain dialog systems. Since most of such systems are trained with a maximum likelihood~(MLE) objective they suffer from issues such as lack of generalizability and the generic response problem, i.e., a system response that can be an answer to a large number of user utterances, e.g., "Maybe, I don't know." Having explicit feedback on the relevance and interestingness of a system response at each turn can be a useful signal for mitigating such issues and improving system quality by selecting responses from different approaches. Towards this goal, we present a system that evaluates chatbot responses at each dialog turn for coherence and engagement. Our system provides explicit turn-level dialog quality feedback, which we show to be highly correlated with human evaluation. To show that incorporating this feedback in the neural response generation models improves dialog quality, we present two different and complementary mechanisms to incorporate explicit feedback into a neural response generation model: reranking and direct modification of the loss function during training. Our studies show that a response generation model that incorporates these combined feedback mechanisms produce more engaging and coherent responses in an open-domain spoken dialog setting, significantly improving the response quality using both automatic and human evaluation

    Dialog-based Interactive Image Retrieval

    Full text link
    Existing methods for interactive image retrieval have demonstrated the merit of integrating user feedback, improving retrieval results. However, most current systems rely on restricted forms of user feedback, such as binary relevance responses, or feedback based on a fixed set of relative attributes, which limits their impact. In this paper, we introduce a new approach to interactive image search that enables users to provide feedback via natural language, allowing for more natural and effective interaction. We formulate the task of dialog-based interactive image retrieval as a reinforcement learning problem, and reward the dialog system for improving the rank of the target image during each dialog turn. To mitigate the cumbersome and costly process of collecting human-machine conversations as the dialog system learns, we train our system with a user simulator, which is itself trained to describe the differences between target and candidate images. The efficacy of our approach is demonstrated in a footwear retrieval application. Experiments on both simulated and real-world data show that 1) our proposed learning framework achieves better accuracy than other supervised and reinforcement learning baselines and 2) user feedback based on natural language rather than pre-specified attributes leads to more effective retrieval results, and a more natural and expressive communication interface.Comment: accepted at NeurIPS 201
    • …
    corecore