5 research outputs found

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Modeling and Implementation of Wireless Sensor Networks for Logistics Applications

    Get PDF
    Logistics has experienced a long time of developments and improvements based on the advanced vehicle technologies, transportation systems, traffic network extension and logistics processes. In the last decades, the complexity has increased significantly and this has created complex logistics networks over multiple continents. Because of the close cooperation, these logistics networks are highly dependent on each other in sharing and processing the logistics information. Every customer has many suppliers and vice versa. The conventional centralized control continues but reaches some limitations such as the different distribution of suppliers, the complexity and flexibility of processing orders or the dynamics of the logistic objects. In order to overcome these disadvantages, the paradigm of autonomous logistics is proposed and promises a better technical solution for current logistics systems. In autonomous logistics, the decision making is shifted toward the logistic objects which are defined as material items (e.g., vehicles, containers) or immaterial items (e.g., customer orders) of a networked logistics system. These objects have the ability to interact with each other and make decisions according to their own objectives. In the technical aspect, with the rapid development of innovative sensor technology, namely Wireless Sensor Networks (WSNs), each element in the network can self-organize and interact with other elements for information transmission. The attachment of an electronic sensor element into a logistic object will create an autonomous environment in both the communication and the logistic domain. With this idea, the requirements of logistics can be fulfilled; for example, the monitoring data can be precise, comprehensive and timely. In addition, the goods flow management can be transferred to the information logistic object management, which is easier by the help of information technologies. However, in order to transmit information between these logistic objects, one requirement is that a routing protocol is necessary. The Opportunistic relative Distance-Enabled Uni-cast Routing (ODEUR ) protocol which is proposed and investigated in this thesis shows that it can be used in autonomous environments like autonomous logistics. Moreover, the support of mobility, multiple sinks and auto-connection in this protocol enhances the dynamics of logistic objects. With a general model which covers a range from low-level issues to high-level protocols, many services such as real time monitoring of environmental conditions, context-aware applications and localization make the logistic objects (embedded with sensor equipment) more advanced in information communication and data processing. The distributed management service in each sensor node allows the flexible configuration of logistic items at any time during the transportation. All of these integrated features introduce a new technical solution for smart logistic items and intelligent transportation systems. In parallel, a management system, WSN data Collection and Management System (WiSeCoMaSys), is designed to interact with the deployed Wireless Sensor Networks. This tool allows the user to easily manipulate the sensor networks remotely. With its rich set of features such as real time data monitoring, data analysis and visualization, per-node management, and alerts, this tool helps both developers and users in the design and deployment of a sensor network. In addition, an analytical model is developed for comparison with the results from simulations and experiments. Focusing on the use of probability theory to model the network links, this model considers several important factors such as packet reception rate and network traffic which are used in the simulation and experiment parts. Moreover, the comparison between simulation, experiment and analytical results is also carried out to estimate the accuracy of the design and make several improvements of the simulation accuracy. Finally, all of the above parts are integrated in one unique system. This system is verified by both simulations in logistic scenarios (e.g., harbors, warehouses and containers) and experiments. The results show that the proposed model and protocol have a good packet delivery rate, little memory requirements and low delay. Accordingly, this system design is practical and applicable in logistics

    Provision of adaptive and context-aware service discovery for the Internet of Things

    Get PDF
    The IoT concept has revolutionised the vision of the future Internet with the advent of standards such as 6LoWPAN making it feasible to extend the Internet into previously isolated environments, e.g., WSNs. The abstraction of resources as services, has opened these environments to a new plethora of potential applications. Moreover, the web service paradigm can be used to provide interoperability by offering a standard interface to interact with these services to enable WoT paradigm. However, these networks pose many challenges, in terms of limited resources, that make the adaptability of existing IP-based solutions infeasible. As traditional service discovery and selection solutions demand heavy communication and use bulky formats, which are unsuitable for these resource-constrained devices incorporating sleep cycles to save energy. Even a registry based approach exhibits burdensome traffic in maintaining the availability status of the devices. The feasible solution for service discovery and selection is instrumental to enable the wide application coverage of these networks in the future. This research project proposes, TRENDY, a new compact and adaptive registry-based SDP with context awareness for the IoT, with more emphasis given to constrained networks, e.g., 6LoWPAN It uses CoAP-based light-weight and RESTful web services to provide standard interoperable interfaces, which can be easily translated from HTTP. TRENDY's service selection mechanism collects and intelligently uses the context information to select appropriate services for user applications based on the available context information of users and services. In addition, TRENDY introduces an adaptive timer algorithm to minimise control overhead for status maintenance, which also reduces energy consumption. Its context-aware grouping technique divides the network at the application layer, by creating location-based groups. This grouping of nodes localises the control overhead and provides the base for service composition, localised aggregation and processing of data. Different grouping roles enable the resource-awareness by offering profiles with varied responsibilities, where high capability devices can implement powerful profiles to share the load of other low capability devices. Thus, it allows the productive usage of network resources. Furthermore, this research project proposes APPUB, an adaptive caching technique, that has the following benefits: it allows service hosts to share their load with the resource directory and also decreases the service invocation delay. The performance of TRENDY and its mechanisms is evaluated using an extensive number of experiments performed using emulated Tmote sky nodes in the COOJA environment. The analysis of the results validates the benefit of performance gain for all techniques. The service selection and APPUB mechanisms improve the service invocation delay considerably that, consequently, reduces the traffic in the network. The timer technique consistently achieved the lowest control overhead, which eventually decreased the energy consumption of the nodes to prolong the network lifetime. Moreover, the low traffic in dense networks decreases the service invocations delay, and makes the solution more scalable. The grouping mechanism localises the traffic, which increases the energy efficiency while improving the scalability. In summary, the experiments demonstrate the benefit of using TRENDY and its techniques in terms of increased energy efficiency and network lifetime, reduced control overhead, better scalability and optimised service invocation time

    Context aware sensornet

    No full text
    corecore