2,179,429 research outputs found
Context-Aware Trajectory Prediction
Human motion and behaviour in crowded spaces is influenced by several
factors, such as the dynamics of other moving agents in the scene, as well as
the static elements that might be perceived as points of attraction or
obstacles. In this work, we present a new model for human trajectory prediction
which is able to take advantage of both human-human and human-space
interactions. The future trajectory of humans, are generated by observing their
past positions and interactions with the surroundings. To this end, we propose
a "context-aware" recurrent neural network LSTM model, which can learn and
predict human motion in crowded spaces such as a sidewalk, a museum or a
shopping mall. We evaluate our model on a public pedestrian datasets, and we
contribute a new challenging dataset that collects videos of humans that
navigate in a (real) crowded space such as a big museum. Results show that our
approach can predict human trajectories better when compared to previous
state-of-the-art forecasting models.Comment: Submitted to BMVC 201
Context-aware Sequential Recommendation
Since sequential information plays an important role in modeling user
behaviors, various sequential recommendation methods have been proposed.
Methods based on Markov assumption are widely-used, but independently combine
several most recent components. Recently, Recurrent Neural Networks (RNN) based
methods have been successfully applied in several sequential modeling tasks.
However, for real-world applications, these methods have difficulty in modeling
the contextual information, which has been proved to be very important for
behavior modeling. In this paper, we propose a novel model, named Context-Aware
Recurrent Neural Networks (CA-RNN). Instead of using the constant input matrix
and transition matrix in conventional RNN models, CA-RNN employs adaptive
context-specific input matrices and adaptive context-specific transition
matrices. The adaptive context-specific input matrices capture external
situations where user behaviors happen, such as time, location, weather and so
on. And the adaptive context-specific transition matrices capture how lengths
of time intervals between adjacent behaviors in historical sequences affect the
transition of global sequential features. Experimental results show that the
proposed CA-RNN model yields significant improvements over state-of-the-art
sequential recommendation methods and context-aware recommendation methods on
two public datasets, i.e., the Taobao dataset and the Movielens-1M dataset.Comment: IEEE International Conference on Data Mining (ICDM) 2016, to apea
Context-Aware Single-Shot Detector
SSD is one of the state-of-the-art object detection algorithms, and it
combines high detection accuracy with real-time speed. However, it is widely
recognized that SSD is less accurate in detecting small objects compared to
large objects, because it ignores the context from outside the proposal boxes.
In this paper, we present CSSD--a shorthand for context-aware single-shot
multibox object detector. CSSD is built on top of SSD, with additional layers
modeling multi-scale contexts. We describe two variants of CSSD, which differ
in their context layers, using dilated convolution layers (DiCSSD) and
deconvolution layers (DeCSSD) respectively. The experimental results show that
the multi-scale context modeling significantly improves the detection accuracy.
In addition, we study the relationship between effective receptive fields
(ERFs) and the theoretical receptive fields (TRFs), particularly on a VGGNet.
The empirical results further strengthen our conclusion that SSD coupled with
context layers achieves better detection results especially for small objects
( on MS-COCO compared to the newest SSD), while
maintaining comparable runtime performance
Context-Aware Handover Policies in HetNets
Next generation cellular systems are expected to entail a wide variety of wireless coverage zones, with cells of different sizes and capacities that can overlap in space and share the transmission resources. In this scenario, which is referred to as Heterogeneous Networks (HetNets), a fundamental challenge is the management of the handover process between macro, femto and pico cells. To limit the number of handovers and the signaling between the cells, it will hence be crucial to manage the user's mobility considering the context parameters, such as cells size, traffic loads, and user velocity. In this paper, we propose a theoretical model to characterize the performance of a mobile user in a HetNet scenario as a function of the user's mobility, the power profile of the neighboring cells, the handover parameters, and the traffic load of the different cells. We propose a Markov-based framework to model the handover process for the mobile user, and derive an optimal context-dependent handover criterion. The mathematical model is validated by means of simulations, comparing the performance of our strategy with conventional handover optimization techniques in different scenarios. Finally, we show the impact of the handover regulation on the users performance and how it is possible to improve the users capacity exploiting context information
- …
