2,179,429 research outputs found

    Context-Aware Trajectory Prediction

    Full text link
    Human motion and behaviour in crowded spaces is influenced by several factors, such as the dynamics of other moving agents in the scene, as well as the static elements that might be perceived as points of attraction or obstacles. In this work, we present a new model for human trajectory prediction which is able to take advantage of both human-human and human-space interactions. The future trajectory of humans, are generated by observing their past positions and interactions with the surroundings. To this end, we propose a "context-aware" recurrent neural network LSTM model, which can learn and predict human motion in crowded spaces such as a sidewalk, a museum or a shopping mall. We evaluate our model on a public pedestrian datasets, and we contribute a new challenging dataset that collects videos of humans that navigate in a (real) crowded space such as a big museum. Results show that our approach can predict human trajectories better when compared to previous state-of-the-art forecasting models.Comment: Submitted to BMVC 201

    Context-aware Sequential Recommendation

    Full text link
    Since sequential information plays an important role in modeling user behaviors, various sequential recommendation methods have been proposed. Methods based on Markov assumption are widely-used, but independently combine several most recent components. Recently, Recurrent Neural Networks (RNN) based methods have been successfully applied in several sequential modeling tasks. However, for real-world applications, these methods have difficulty in modeling the contextual information, which has been proved to be very important for behavior modeling. In this paper, we propose a novel model, named Context-Aware Recurrent Neural Networks (CA-RNN). Instead of using the constant input matrix and transition matrix in conventional RNN models, CA-RNN employs adaptive context-specific input matrices and adaptive context-specific transition matrices. The adaptive context-specific input matrices capture external situations where user behaviors happen, such as time, location, weather and so on. And the adaptive context-specific transition matrices capture how lengths of time intervals between adjacent behaviors in historical sequences affect the transition of global sequential features. Experimental results show that the proposed CA-RNN model yields significant improvements over state-of-the-art sequential recommendation methods and context-aware recommendation methods on two public datasets, i.e., the Taobao dataset and the Movielens-1M dataset.Comment: IEEE International Conference on Data Mining (ICDM) 2016, to apea

    Context-Aware Single-Shot Detector

    Full text link
    SSD is one of the state-of-the-art object detection algorithms, and it combines high detection accuracy with real-time speed. However, it is widely recognized that SSD is less accurate in detecting small objects compared to large objects, because it ignores the context from outside the proposal boxes. In this paper, we present CSSD--a shorthand for context-aware single-shot multibox object detector. CSSD is built on top of SSD, with additional layers modeling multi-scale contexts. We describe two variants of CSSD, which differ in their context layers, using dilated convolution layers (DiCSSD) and deconvolution layers (DeCSSD) respectively. The experimental results show that the multi-scale context modeling significantly improves the detection accuracy. In addition, we study the relationship between effective receptive fields (ERFs) and the theoretical receptive fields (TRFs), particularly on a VGGNet. The empirical results further strengthen our conclusion that SSD coupled with context layers achieves better detection results especially for small objects (+3.2%AP@0.5+3.2\% {\rm AP}_{@0.5} on MS-COCO compared to the newest SSD), while maintaining comparable runtime performance

    Context-Aware Handover Policies in HetNets

    Get PDF
    Next generation cellular systems are expected to entail a wide variety of wireless coverage zones, with cells of different sizes and capacities that can overlap in space and share the transmission resources. In this scenario, which is referred to as Heterogeneous Networks (HetNets), a fundamental challenge is the management of the handover process between macro, femto and pico cells. To limit the number of handovers and the signaling between the cells, it will hence be crucial to manage the user's mobility considering the context parameters, such as cells size, traffic loads, and user velocity. In this paper, we propose a theoretical model to characterize the performance of a mobile user in a HetNet scenario as a function of the user's mobility, the power profile of the neighboring cells, the handover parameters, and the traffic load of the different cells. We propose a Markov-based framework to model the handover process for the mobile user, and derive an optimal context-dependent handover criterion. The mathematical model is validated by means of simulations, comparing the performance of our strategy with conventional handover optimization techniques in different scenarios. Finally, we show the impact of the handover regulation on the users performance and how it is possible to improve the users capacity exploiting context information
    corecore