12,232 research outputs found

    Predicting Gaze in Egocentric Video by Learning Task-dependent Attention Transition

    Full text link
    We present a new computational model for gaze prediction in egocentric videos by exploring patterns in temporal shift of gaze fixations (attention transition) that are dependent on egocentric manipulation tasks. Our assumption is that the high-level context of how a task is completed in a certain way has a strong influence on attention transition and should be modeled for gaze prediction in natural dynamic scenes. Specifically, we propose a hybrid model based on deep neural networks which integrates task-dependent attention transition with bottom-up saliency prediction. In particular, the task-dependent attention transition is learned with a recurrent neural network to exploit the temporal context of gaze fixations, e.g. looking at a cup after moving gaze away from a grasped bottle. Experiments on public egocentric activity datasets show that our model significantly outperforms state-of-the-art gaze prediction methods and is able to learn meaningful transition of human attention.Comment: Accepted as oral presentation in ECCV 201

    Deep Learning applied to NLP

    Full text link
    Convolutional Neural Network (CNNs) are typically associated with Computer Vision. CNNs are responsible for major breakthroughs in Image Classification and are the core of most Computer Vision systems today. More recently CNNs have been applied to problems in Natural Language Processing and gotten some interesting results. In this paper, we will try to explain the basics of CNNs, its different variations and how they have been applied to NLP

    A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems

    Full text link
    A deep-learning-based surrogate model is developed and applied for predicting dynamic subsurface flow in channelized geological models. The surrogate model is based on deep convolutional and recurrent neural network architectures, specifically a residual U-Net and a convolutional long short term memory recurrent network. Training samples entail global pressure and saturation maps, at a series of time steps, generated by simulating oil-water flow in many (1500 in our case) realizations of a 2D channelized system. After training, the `recurrent R-U-Net' surrogate model is shown to be capable of accurately predicting dynamic pressure and saturation maps and well rates (e.g., time-varying oil and water rates at production wells) for new geological realizations. Assessments demonstrating high surrogate-model accuracy are presented for an individual geological realization and for an ensemble of 500 test geomodels. The surrogate model is then used for the challenging problem of data assimilation (history matching) in a channelized system. For this study, posterior reservoir models are generated using the randomized maximum likelihood method, with the permeability field represented using the recently developed CNN-PCA parameterization. The flow responses required during the data assimilation procedure are provided by the recurrent R-U-Net. The overall approach is shown to lead to substantial reduction in prediction uncertainty. High-fidelity numerical simulation results for the posterior geomodels (generated by the surrogate-based data assimilation procedure) are shown to be in essential agreement with the recurrent R-U-Net predictions. The accuracy and dramatic speedup provided by the surrogate model suggest that it may eventually enable the application of more formal posterior sampling methods in realistic problems

    Information Aggregation via Dynamic Routing for Sequence Encoding

    Full text link
    While much progress has been made in how to encode a text sequence into a sequence of vectors, less attention has been paid to how to aggregate these preceding vectors (outputs of RNN/CNN) into fixed-size encoding vector. Usually, a simple max or average pooling is used, which is a bottom-up and passive way of aggregation and lack of guidance by task information. In this paper, we propose an aggregation mechanism to obtain a fixed-size encoding with a dynamic routing policy. The dynamic routing policy is dynamically deciding that what and how much information need be transferred from each word to the final encoding of the text sequence. Following the work of Capsule Network, we design two dynamic routing policies to aggregate the outputs of RNN/CNN encoding layer into a final encoding vector. Compared to the other aggregation methods, dynamic routing can refine the messages according to the state of final encoding vector. Experimental results on five text classification tasks show that our method outperforms other aggregating models by a significant margin. Related source code is released on our github page

    Deep Co-attention based Comparators For Relative Representation Learning in Person Re-identification

    Full text link
    Person re-identification (re-ID) requires rapid, flexible yet discriminant representations to quickly generalize to unseen observations on-the-fly and recognize the same identity across disjoint camera views. Recent effective methods are developed in a pair-wise similarity learning system to detect a fixed set of features from distinct regions which are mapped to their vector embeddings for the distance measuring. However, the most relevant and crucial parts of each image are detected independently without referring to the dependency conditioned on one and another. Also, these region based methods rely on spatial manipulation to position the local features in comparable similarity measuring. To combat these limitations, in this paper we introduce the Deep Co-attention based Comparators (DCCs) that fuse the co-dependent representations of the paired images so as to focus on the relevant parts of both images and produce their \textit{relative representations}. Given a pair of pedestrian images to be compared, the proposed model mimics the foveation of human eyes to detect distinct regions concurrent on both images, namely co-dependent features, and alternatively attend to relevant regions to fuse them into the similarity learning. Our comparator is capable of producing dynamic representations relative to a particular sample every time, and thus well-suited to the case of re-identifying pedestrians on-the-fly. We perform extensive experiments to provide the insights and demonstrate the effectiveness of the proposed DCCs in person re-ID. Moreover, our approach has achieved the state-of-the-art performance on three benchmark data sets: DukeMTMC-reID \cite{DukeMTMC}, CUHK03 \cite{FPNN}, and Market-1501 \cite{Market1501}

    OrthoSeg: A Deep Multimodal Convolutional Neural Network for Semantic Segmentation of Orthoimagery

    Full text link
    This paper addresses the task of semantic segmentation of orthoimagery using multimodal data e.g. optical RGB, infrared and digital surface model. We propose a deep convolutional neural network architecture termed OrthoSeg for semantic segmentation using multimodal, orthorectified and coregistered data. We also propose a training procedure for supervised training of OrthoSeg. The training procedure complements the inherent architectural characteristics of OrthoSeg for preventing complex co-adaptations of learned features, which may arise due to probable high dimensionality and spatial correlation in multimodal and/or multispectral coregistered data. OrthoSeg consists of parallel encoding networks for independent encoding of multimodal feature maps and a decoder designed for efficiently fusing independently encoded multimodal feature maps. A softmax layer at the end of the network uses the features generated by the decoder for pixel-wise classification. The decoder fuses feature maps from the parallel encoders locally as well as contextually at multiple scales to generate per-pixel feature maps for final pixel-wise classification resulting in segmented output. We experimentally show the merits of OrthoSeg by demonstrating state-of-the-art accuracy on the ISPRS Potsdam 2D Semantic Segmentation dataset. Adaptability is one of the key motivations behind OrthoSeg so that it serves as a useful architectural option for a wide range of problems involving the task of semantic segmentation of coregistered multimodal and/or multispectral imagery. Hence, OrthoSeg is designed to enable independent scaling of parallel encoder networks and decoder network to better match application requirements, such as the number of input channels, the effective field-of-view, and model capacity.Comment: 8 pages, 9 figures, 3 table

    Visual Reference Resolution using Attention Memory for Visual Dialog

    Full text link
    Visual dialog is a task of answering a series of inter-dependent questions given an input image, and often requires to resolve visual references among the questions. This problem is different from visual question answering (VQA), which relies on spatial attention (a.k.a. visual grounding) estimated from an image and question pair. We propose a novel attention mechanism that exploits visual attentions in the past to resolve the current reference in the visual dialog scenario. The proposed model is equipped with an associative attention memory storing a sequence of previous (attention, key) pairs. From this memory, the model retrieves the previous attention, taking into account recency, which is most relevant for the current question, in order to resolve potentially ambiguous references. The model then merges the retrieved attention with a tentative one to obtain the final attention for the current question; specifically, we use dynamic parameter prediction to combine the two attentions conditioned on the question. Through extensive experiments on a new synthetic visual dialog dataset, we show that our model significantly outperforms the state-of-the-art (by ~16 % points) in situations, where visual reference resolution plays an important role. Moreover, the proposed model achieves superior performance (~ 2 % points improvement) in the Visual Dialog dataset, despite having significantly fewer parameters than the baselines

    Discriminatively Learned Hierarchical Rank Pooling Networks

    Full text link
    In this work, we present novel temporal encoding methods for action and activity classification by extending the unsupervised rank pooling temporal encoding method in two ways. First, we present "discriminative rank pooling" in which the shared weights of our video representation and the parameters of the action classifiers are estimated jointly for a given training dataset of labelled vector sequences using a bilevel optimization formulation of the learning problem. When the frame level features vectors are obtained from a convolutional neural network (CNN), we rank pool the network activations and jointly estimate all parameters of the model, including CNN filters and fully-connected weights, in an end-to-end manner which we coined as "end-to-end trainable rank pooled CNN". Importantly, this model can make use of any existing convolutional neural network architecture (e.g., AlexNet or VGG) without modification or introduction of additional parameters. Then, we extend rank pooling to a high capacity video representation, called "hierarchical rank pooling". Hierarchical rank pooling consists of a network of rank pooling functions, which encode temporal semantics over arbitrary long video clips based on rich frame level features. By stacking non-linear feature functions and temporal sub-sequence encoders one on top of the other, we build a high capacity encoding network of the dynamic behaviour of the video. The resulting video representation is a fixed-length feature vector describing the entire video clip that can be used as input to standard machine learning classifiers. We demonstrate our approach on the task of action and activity recognition. Obtained results are comparable to state-of-the-art methods on three important activity recognition benchmarks with classification performance of 76.7% mAP on Hollywood2, 69.4% on HMDB51, and 93.6% on UCF101.Comment: International Journal of Computer Visio

    Deep Learning for Sentiment Analysis : A Survey

    Full text link
    Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.Comment: 34 pages, 9 figures, 2 table

    Efficient Inferencing of Compressed Deep Neural Networks

    Full text link
    Large number of weights in deep neural networks makes the models difficult to be deployed in low memory environments such as, mobile phones, IOT edge devices as well as "inferencing as a service" environments on cloud. Prior work has considered reduction in the size of the models, through compression techniques like pruning, quantization, Huffman encoding etc. However, efficient inferencing using the compressed models has received little attention, specially with the Huffman encoding in place. In this paper, we propose efficient parallel algorithms for inferencing of single image and batches, under various memory constraints. Our experimental results show that our approach of using variable batch size for inferencing achieves 15-25\% performance improvement in the inference throughput for AlexNet, while maintaining memory and latency constraints
    • …
    corecore