45,218 research outputs found

    Learning Heterogeneous Network Embedding From Text and Links

    Get PDF
    Finding methods to represent multiple types of nodes in heterogeneous networks is both challenging and rewarding, as there is much less work in this area compared with that of homogeneous networks. In this paper, we propose a novel approach to learn node embedding for heterogeneous networks through a joint learning framework of both network links and text associated with nodes. A novel attention mechanism is also used to make good use of text extended through links to obtain much larger network context. Link embedding is first learned through a random-walk-based method to process multiple types of links. Text embedding is separately learned at both sentence level and document level to capture salient semantic information more comprehensively. Then, both types of embeddings are jointly fed into a hierarchical neural network model to learn node representation through mutual enhancement. The attention mechanism follows linked edges to obtain context of adjacent nodes to extend context for node representation. The evaluation on a link prediction task in a heterogeneous network data set shows that our method outperforms the current state-of-the-art method by 2.5%-5.0% in AUC values with p-value less than 10 -9 , indicating very significant improvement

    DisenHAN: Disentangled Heterogeneous Graph Attention Network for Recommendation

    Full text link
    Heterogeneous information network has been widely used to alleviate sparsity and cold start problems in recommender systems since it can model rich context information in user-item interactions. Graph neural network is able to encode this rich context information through propagation on the graph. However, existing heterogeneous graph neural networks neglect entanglement of the latent factors stemming from different aspects. Moreover, meta paths in existing approaches are simplified as connecting paths or side information between node pairs, overlooking the rich semantic information in the paths. In this paper, we propose a novel disentangled heterogeneous graph attention network DisenHAN for top-NN recommendation, which learns disentangled user/item representations from different aspects in a heterogeneous information network. In particular, we use meta relations to decompose high-order connectivity between node pairs and propose a disentangled embedding propagation layer which can iteratively identify the major aspect of meta relations. Our model aggregates corresponding aspect features from each meta relation for the target user/item. With different layers of embedding propagation, DisenHAN is able to explicitly capture the collaborative filtering effect semantically. Extensive experiments on three real-world datasets show that DisenHAN consistently outperforms state-of-the-art approaches. We further demonstrate the effectiveness and interpretability of the learned disentangled representations via insightful case studies and visualization.Comment: Accepted at CIKM202

    Representation Learning for Attributed Multiplex Heterogeneous Network

    Full text link
    Network embedding (or graph embedding) has been widely used in many real-world applications. However, existing methods mainly focus on networks with single-typed nodes/edges and cannot scale well to handle large networks. Many real-world networks consist of billions of nodes and edges of multiple types, and each node is associated with different attributes. In this paper, we formalize the problem of embedding learning for the Attributed Multiplex Heterogeneous Network and propose a unified framework to address this problem. The framework supports both transductive and inductive learning. We also give the theoretical analysis of the proposed framework, showing its connection with previous works and proving its better expressiveness. We conduct systematical evaluations for the proposed framework on four different genres of challenging datasets: Amazon, YouTube, Twitter, and Alibaba. Experimental results demonstrate that with the learned embeddings from the proposed framework, we can achieve statistically significant improvements (e.g., 5.99-28.23% lift by F1 scores; p<<0.01, t-test) over previous state-of-the-art methods for link prediction. The framework has also been successfully deployed on the recommendation system of a worldwide leading e-commerce company, Alibaba Group. Results of the offline A/B tests on product recommendation further confirm the effectiveness and efficiency of the framework in practice.Comment: Accepted to KDD 2019. Website: https://sites.google.com/view/gatn
    corecore