4,921 research outputs found

    Social-Aware Replication in Geo-Diverse Online Systems

    Full text link

    A survey on cost-effective context-aware distribution of social data streams over energy-efficient data centres

    Get PDF
    Social media have emerged in the last decade as a viable and ubiquitous means of communication. The ease of user content generation within these platforms, e.g. check-in information, multimedia data, etc., along with the proliferation of Global Positioning System (GPS)-enabled, always-connected capture devices lead to data streams of unprecedented amount and a radical change in information sharing. Social data streams raise a variety of practical challenges, including derivation of real-time meaningful insights from effectively gathered social information, as well as a paradigm shift for content distribution with the leverage of contextual data associated with user preferences, geographical characteristics and devices in general. In this article we present a comprehensive survey that outlines the state-of-the-art situation and organizes challenges concerning social media streams and the infrastructure of the data centres supporting the efficient access to data streams in terms of content distribution, data diffusion, data replication, energy efficiency and network infrastructure. We systematize the existing literature and proceed to identify and analyse the main research points and industrial efforts in the area as far as modelling, simulation and performance evaluation are concerned

    Effective and Economical Content Delivery and Storage Strategies for Cloud Systems

    Get PDF
    Cloud computing has proved to be an effective infrastructure to host various applications and provide reliable and stable services. Content delivery and storage are two main services provided by the cloud. A high-performance cloud can reduce the cost of both cloud providers and customers, while providing high application performance to cloud clients. Thus, the performance of such cloud-based services is closely related to three issues. First, when delivering contents from the cloud to users or transferring contents between cloud datacenters, it is important to reduce the payment costs and transmission time. Second, when transferring contents between cloud datacenters, it is important to reduce the payment costs to the internet service providers (ISPs). Third, when storing contents in the datacenters, it is crucial to reduce the file read latency and power consumption of the datacenters. In this dissertation, we study how to effectively deliver and store contents on the cloud, with a focus on cloud gaming and video streaming services. In particular, we aim to address three problems. i) Cost-efficient cloud computing system to support thin-client Massively Multiplayer Online Game (MMOG): how to achieve high Quality of Service (QoS) in cloud gaming and reduce the cloud bandwidth consumption; ii) Cost-efficient inter-datacenter video scheduling: how to reduce the bandwidth payment cost by fully utilizing link bandwidth when cloud providers transfer videos between datacenters; iii) Energy-efficient adaptive file replication: how to adapt to time-varying file popularities to achieve a good tradeoff between data availability and efficiency, as well as reduce the power consumption of the datacenters. In this dissertation, we propose methods to solve each of aforementioned challenges on the cloud. As a result, we build a cloud system that has a cost-efficient system to support cloud clients, an inter-datacenter video scheduling algorithm for video transmission on the cloud and an adaptive file replication algorithm for cloud storage system. As a result, the cloud system not only benefits the cloud providers in reducing the cloud cost, but also benefits the cloud customers in reducing their payment cost and improving high cloud application performance (i.e., user experience). Finally, we conducted extensive experiments on many testbeds, including PeerSim, PlanetLab, EC2 and a real-world cluster, which demonstrate the efficiency and effectiveness of our proposed methods. In our future work, we will further study how to further improve user experience in receiving contents and reduce the cost due to content transfer

    An Effective Peer to Peer Video Sharing Scheme with Social Reciprocity

    Get PDF
    Online video sharing and social networking are self-fertilizing speedily in today’s Internet. Online social network users are flooding more video contents among each other. A fascinating development as it is, the operational challenge in previous video streaming systems persists, i.e., the large server load required for topping of the systems. Exploring the unique advantages of a social networking based video streaming system; it advocate utilizing social reciprocities among peers with social relationships for efficient involvement incentivization and development, so as to enable high quality video streaming with low server cost. Then why only video: because more people prefer watching videos. Videos induce people to stay longer on websites. People remember videos. It achievement social reciprocity with two give-and-take ratios at each peer: (1) peer contribution ratio (PCR), which calculates the reciprocity level between a couple of social friends, and (2) system contribution ratio (SCR), which records the give-and-take level of the user to & from the entire system. It expect efficient Peer to Peer mechanisms for video streaming using the two ratios, where each user optimally chooses which other users to seek relay help from and help in relaying video streams, respectively, based on combined evaluations of their social relationship and historical reciprocity levels. This design helps to gain effective incentives for resource contribution, load balancing among relay peers, and efficient social-aware resource scheduling, security to the videos and high prefetching accuracy. DOI: 10.17762/ijritcc2321-8169.15071
    • …
    corecore