1,653 research outputs found

    Learning Sparse & Ternary Neural Networks with Entropy-Constrained Trained Ternarization (EC2T)

    Full text link
    Deep neural networks (DNN) have shown remarkable success in a variety of machine learning applications. The capacity of these models (i.e., number of parameters), endows them with expressive power and allows them to reach the desired performance. In recent years, there is an increasing interest in deploying DNNs to resource-constrained devices (i.e., mobile devices) with limited energy, memory, and computational budget. To address this problem, we propose Entropy-Constrained Trained Ternarization (EC2T), a general framework to create sparse and ternary neural networks which are efficient in terms of storage (e.g., at most two binary-masks and two full-precision values are required to save a weight matrix) and computation (e.g., MAC operations are reduced to a few accumulations plus two multiplications). This approach consists of two steps. First, a super-network is created by scaling the dimensions of a pre-trained model (i.e., its width and depth). Subsequently, this super-network is simultaneously pruned (using an entropy constraint) and quantized (that is, ternary values are assigned layer-wise) in a training process, resulting in a sparse and ternary network representation. We validate the proposed approach in CIFAR-10, CIFAR-100, and ImageNet datasets, showing its effectiveness in image classification tasks.Comment: Proceedings of the CVPR'20 Joint Workshop on Efficient Deep Learning in Computer Vision. Code is available at https://github.com/d-becking/efficientCNN

    Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge

    Full text link
    We envision a mobile edge computing (MEC) framework for machine learning (ML) technologies, which leverages distributed client data and computation resources for training high-performance ML models while preserving client privacy. Toward this future goal, this work aims to extend Federated Learning (FL), a decentralized learning framework that enables privacy-preserving training of models, to work with heterogeneous clients in a practical cellular network. The FL protocol iteratively asks random clients to download a trainable model from a server, update it with own data, and upload the updated model to the server, while asking the server to aggregate multiple client updates to further improve the model. While clients in this protocol are free from disclosing own private data, the overall training process can become inefficient when some clients are with limited computational resources (i.e. requiring longer update time) or under poor wireless channel conditions (longer upload time). Our new FL protocol, which we refer to as FedCS, mitigates this problem and performs FL efficiently while actively managing clients based on their resource conditions. Specifically, FedCS solves a client selection problem with resource constraints, which allows the server to aggregate as many client updates as possible and to accelerate performance improvement in ML models. We conducted an experimental evaluation using publicly-available large-scale image datasets to train deep neural networks on MEC environment simulations. The experimental results show that FedCS is able to complete its training process in a significantly shorter time compared to the original FL protocol
    • …
    corecore