15 research outputs found

    Improving files availability for BitTorrent using a diffusion model

    Full text link
    The BitTorrent mechanism effectively spreads file fragments by copying the rarest fragments first. We propose to apply a mathematical model for the diffusion of fragments on a P2P in order to take into account both the effects of peer distances and the changing availability of peers while time goes on. Moreover, we manage to provide a forecast on the availability of a torrent thanks to a neural network that models the behaviour of peers on the P2P system. The combination of the mathematical model and the neural network provides a solution for choosing file fragments that need to be copied first, in order to ensure their continuous availability, counteracting possible disconnections by some peers

    ISP-friendly Peer-assisted On-demand Streaming of Long Duration Content in BBC iPlayer

    Full text link
    In search of scalable solutions, CDNs are exploring P2P support. However, the benefits of peer assistance can be limited by various obstacle factors such as ISP friendliness - requiring peers to be within the same ISP, bitrate stratification - the need to match peers with others needing similar bitrate, and partial participation - some peers choosing not to redistribute content. This work relates potential gains from peer assistance to the average number of users in a swarm, its capacity, and empirically studies the effects of these obstacle factors at scale, using a month-long trace of over 2 million users in London accessing BBC shows online. Results indicate that even when P2P swarms are localised within ISPs, up to 88% of traffic can be saved. Surprisingly, bitrate stratification results in 2 large sub-swarms and does not significantly affect savings. However, partial participation, and the need for a minimum swarm size do affect gains. We investigate improvements to gain from increasing content availability through two well-studied techniques: content bundling - combining multiple items to increase availability, and historical caching of previously watched items. Bundling proves ineffective as increased server traffic from larger bundles outweighs benefits of availability, but simple caching can considerably boost traffic gains from peer assistance.Comment: In Proceedings of IEEE INFOCOM 201

    A Cooperation-Driven ICN-based Caching Scheme for Mobile Content chunk Delivery at RAN

    Get PDF
    In order to resolve the tension between continuously growing mobile users’ demands on content access and the scarcity of the bandwidth capacity over backhaul links, we propose in this paper a fully distributed ICN-based caching scheme for content objects in Radio Access Network (RAN) at eNodeBs. Such caching scheme operates in a cooperative way within neighbourhoods, aiming to reduce cache redundancy so as to improve the diversity of content distribution. The caching decision logic at individual eNodeBs allows for adaptive caching, by taking into account dynamic context information, such as content popularity and availability. The efficiency of the proposed distributed caching scheme is evaluated via extensive simulations, which show great performance gains, in terms of a substantial reduction of backhaul content traffic as well as great improvement on the diversity of content distribution, etc

    Estimating Self-Sustainability in Peer-to-Peer Swarming Systems

    Full text link
    Peer-to-peer swarming is one of the \emph{de facto} solutions for distributed content dissemination in today's Internet. By leveraging resources provided by clients, swarming systems reduce the load on and costs to publishers. However, there is a limit to how much cost savings can be gained from swarming; for example, for unpopular content peers will always depend on the publisher in order to complete their downloads. In this paper, we investigate this dependence. For this purpose, we propose a new metric, namely \emph{swarm self-sustainability}. A swarm is referred to as self-sustaining if all its blocks are collectively held by peers; the self-sustainability of a swarm is the fraction of time in which the swarm is self-sustaining. We pose the following question: how does the self-sustainability of a swarm vary as a function of content popularity, the service capacity of the users, and the size of the file? We present a model to answer the posed question. We then propose efficient solution methods to compute self-sustainability. The accuracy of our estimates is validated against simulation. Finally, we also provide closed-form expressions for the fraction of time that a given number of blocks is collectively held by peers.Comment: 27 pages, 5 figure

    A New Stable Peer-to-Peer Protocol with Non-persistent Peers

    Full text link
    Recent studies have suggested that the stability of peer-to-peer networks may rely on persistent peers, who dwell on the network after they obtain the entire file. In the absence of such peers, one piece becomes extremely rare in the network, which leads to instability. Technological developments, however, are poised to reduce the incidence of persistent peers, giving rise to a need for a protocol that guarantees stability with non-persistent peers. We propose a novel peer-to-peer protocol, the group suppression protocol, to ensure the stability of peer-to-peer networks under the scenario that all the peers adopt non-persistent behavior. Using a suitable Lyapunov potential function, the group suppression protocol is proven to be stable when the file is broken into two pieces, and detailed experiments demonstrate the stability of the protocol for arbitrary number of pieces. We define and simulate a decentralized version of this protocol for practical applications. Straightforward incorporation of the group suppression protocol into BitTorrent while retaining most of BitTorrent's core mechanisms is also presented. Subsequent simulations show that under certain assumptions, BitTorrent with the official protocol cannot escape from the missing piece syndrome, but BitTorrent with group suppression does.Comment: There are only a couple of minor changes in this version. Simulation tool is specified this time. Some repetitive figures are remove

    Social-Aware Replication in Geo-Diverse Online Systems

    Full text link
    corecore