1,755 research outputs found

    Image interpolation using Shearlet based iterative refinement

    Get PDF
    This paper proposes an image interpolation algorithm exploiting sparse representation for natural images. It involves three main steps: (a) obtaining an initial estimate of the high resolution image using linear methods like FIR filtering, (b) promoting sparsity in a selected dictionary through iterative thresholding, and (c) extracting high frequency information from the approximation to refine the initial estimate. For the sparse modeling, a shearlet dictionary is chosen to yield a multiscale directional representation. The proposed algorithm is compared to several state-of-the-art methods to assess its objective as well as subjective performance. Compared to the cubic spline interpolation method, an average PSNR gain of around 0.8 dB is observed over a dataset of 200 images

    A Compressive Multi-Mode Superresolution Display

    Get PDF
    Compressive displays are an emerging technology exploring the co-design of new optical device configurations and compressive computation. Previously, research has shown how to improve the dynamic range of displays and facilitate high-quality light field or glasses-free 3D image synthesis. In this paper, we introduce a new multi-mode compressive display architecture that supports switching between 3D and high dynamic range (HDR) modes as well as a new super-resolution mode. The proposed hardware consists of readily-available components and is driven by a novel splitting algorithm that computes the pixel states from a target high-resolution image. In effect, the display pixels present a compressed representation of the target image that is perceived as a single, high resolution image.Comment: Technical repor

    Context-aware Synthesis for Video Frame Interpolation

    Get PDF
    Video frame interpolation algorithms typically estimate optical flow or its variations and then use it to guide the synthesis of an intermediate frame between two consecutive original frames. To handle challenges like occlusion, bidirectional flow between the two input frames is often estimated and used to warp and blend the input frames. However, how to effectively blend the two warped frames still remains a challenging problem. This paper presents a context-aware synthesis approach that warps not only the input frames but also their pixel-wise contextual information and uses them to interpolate a high-quality intermediate frame. Specifically, we first use a pre-trained neural network to extract per-pixel contextual information for input frames. We then employ a state-of-the-art optical flow algorithm to estimate bidirectional flow between them and pre-warp both input frames and their context maps. Finally, unlike common approaches that blend the pre-warped frames, our method feeds them and their context maps to a video frame synthesis neural network to produce the interpolated frame in a context-aware fashion. Our neural network is fully convolutional and is trained end to end. Our experiments show that our method can handle challenging scenarios such as occlusion and large motion and outperforms representative state-of-the-art approaches.Comment: CVPR 2018, http://graphics.cs.pdx.edu/project/ctxsy
    • …
    corecore