4 research outputs found

    Containment Control of Multi-Agent Systems with Dynamic Leaders Based on a PInPI^n-Type Approach

    Full text link
    This paper studies the containment control problem of multi-agent systems with multiple dynamic leaders in both the discrete-time domain and the continuous-time domain. The leaders' motions are described by (n−1)(n-1)-order polynomial trajectories. This setting makes practical sense because given some critical points, the leaders' trajectories are usually planned by the polynomial interpolations. In order to drive all followers into the convex hull spanned by the leaders, a PInPI^n-type (PP and II are short for {\it Proportion} and {\it Integration}, respectively; InI^n implies that the algorithm includes high-order integral terms) containment algorithm is proposed. It is theoretically proved that the PInPI^n-type containment algorithm is able to solve the containment problem of multi-agent systems where the followers are described by any order integral dynamics. Compared with the previous results on the multi-agent systems with dynamic leaders, the distinguished features of this paper are that: (1) the containment problem is studied not only in the continuous-time domain but also in the discrete-time domain while most existing results only work in the continuous-time domain; (2) to deal with the leaders with the (n−1)(n-1)-order polynomial trajectories, existing results require the follower's dynamics to be nn-order integral while the followers considered in this paper can be described by any-order integral; and (3) the "sign" function is not employed in the proposed algorithm, which avoids the chattering phenomenon. Furthermore, in order to illustrate the practical value of the proposed approach, an application, the containment control of multiple mobile robots is studied. Finally, two simulation examples are given to demonstrate the effectiveness of the proposed algorithm

    Bipartite containment of heterogeneous multi-agent systems under denial-of-service attacks: a historical information-based control scheme

    Get PDF
    A distributed control scheme based on historical information is designed to solve the problem of stable control of multi-agent systems under denial of service (DoS) attacks in this article. It achieves the control objective of bipartite output containment control, that is, the output states of the followers smoothly enter the target area. The control scheme updates the states of followers through historical information in the control protocol when agents are subjected to DoS attacks. A distributed state observer with a storage module is designed to efficiently estimate the state of followers and store the observed information as history information. The historical information of control protocol calls is not necessarily the real state information in the existence of DoS attacks. Consequently, a closed-loop feedback state compensator is designed. Then, the state compensator is converted from the time domain to the frequency domain for stability analysis using the Nyquist criterion. It is obtained that an upper bound on the amount of historical information can achieve the bipartite output trajectories containment of the controlled system. The output trajectories of the followers converge into two dynamic convex hulls, one of which is surrounded by multiple leaders, and the other is a convex hull with opposite signs of the leaders. Finally, a numerical simulation is used to verify the proposed control scheme, and the operability of the scheme is further demonstrated in a physical experiment
    corecore