42 research outputs found

    Constructive Discrepancy Minimization by Walking on the Edges

    Full text link

    An Algorithm for Koml\'os Conjecture Matching Banaszczyk's bound

    Get PDF
    We consider the problem of finding a low discrepancy coloring for sparse set systems where each element lies in at most t sets. We give an efficient algorithm that finds a coloring with discrepancy O((t log n)^{1/2}), matching the best known non-constructive bound for the problem due to Banaszczyk. The previous algorithms only achieved an O(t^{1/2} log n) bound. The result also extends to the more general Koml\'{o}s setting and gives an algorithmic O(log^{1/2} n) bound

    On Integer Programming, Discrepancy, and Convolution

    Full text link
    Integer programs with a constant number of constraints are solvable in pseudo-polynomial time. We give a new algorithm with a better pseudo-polynomial running time than previous results. Moreover, we establish a strong connection to the problem (min, +)-convolution. (min, +)-convolution has a trivial quadratic time algorithm and it has been conjectured that this cannot be improved significantly. We show that further improvements to our pseudo-polynomial algorithm for any fixed number of constraints are equivalent to improvements for (min, +)-convolution. This is a strong evidence that our algorithm's running time is the best possible. We also present a faster specialized algorithm for testing feasibility of an integer program with few constraints and for this we also give a tight lower bound, which is based on the SETH.Comment: A preliminary version appeared in the proceedings of ITCS 201

    Approximating Bin Packing within O(log OPT * log log OPT) bins

    Full text link
    For bin packing, the input consists of n items with sizes s_1,...,s_n in [0,1] which have to be assigned to a minimum number of bins of size 1. The seminal Karmarkar-Karp algorithm from '82 produces a solution with at most OPT + O(log^2 OPT) bins. We provide the first improvement in now 3 decades and show that one can find a solution of cost OPT + O(log OPT * log log OPT) in polynomial time. This is achieved by rounding a fractional solution to the Gilmore-Gomory LP relaxation using the Entropy Method from discrepancy theory. The result is constructive via algorithms of Bansal and Lovett-Meka

    On a generalization of iterated and randomized rounding

    Get PDF
    We give a general method for rounding linear programs that combines the commonly used iterated rounding and randomized rounding techniques. In particular, we show that whenever iterated rounding can be applied to a problem with some slack, there is a randomized procedure that returns an integral solution that satisfies the guarantees of iterated rounding and also has concentration properties. We use this to give new results for several classic problems where iterated rounding has been useful

    On the discrepancy of random low degree set systems

    Get PDF
    Motivated by the celebrated Beck-Fiala conjecture, we consider the random setting where there are n elements and m sets and each element lies in t randomly chosen sets. In this setting, Ezra and Lovett showed an O((tlogt)1/2) discrepancy bound in the regime when n ≤ m and an O(1) bound when n≫mt. In this paper, we give a tight O(√t) bound for the entire range of n and m, under a mild assumption that t=Ω(log log m)2. The result is based on two steps. First, applying the partial coloring method to the case when n=mlogO(1)m and using the properties of the random set system we show that the overa
    corecore