16 research outputs found

    On Error Decoding of Locally Repairable and Partial MDS Codes

    Full text link
    We consider error decoding of locally repairable codes (LRC) and partial MDS (PMDS) codes through interleaved decoding. For a specific class of LRCs we investigate the success probability of interleaved decoding. For PMDS codes we show that there is a wide range of parameters for which interleaved decoding can increase their decoding radius beyond the minimum distance with the probability of successful decoding approaching 11, when the code length goes to infinity

    Partial MDS Codes with Local Regeneration

    Full text link
    Partial MDS (PMDS) and sector-disk (SD) codes are classes of erasure codes that combine locality with strong erasure correction capabilities. We construct PMDS and SD codes where each local code is a bandwidth-optimal regenerating MDS code. The constructions require significantly smaller field size than the only other construction known in literature

    Maximally Recoverable Codes with Hierarchical Locality

    Full text link
    Maximally recoverable codes are a class of codes which recover from all potentially recoverable erasure patterns given the locality constraints of the code. In earlier works, these codes have been studied in the context of codes with locality. The notion of locality has been extended to hierarchical locality, which allows for locality to gradually increase in levels with the increase in the number of erasures. We consider the locality constraints imposed by codes with two-level hierarchical locality and define maximally recoverable codes with data-local and local hierarchical locality. We derive certain properties related to their punctured codes and minimum distance. We give a procedure to construct hierarchical data-local MRCs from hierarchical local MRCs. We provide a construction of hierarchical local MRCs for all parameters. For the case of one global parity, we provide a different construction of hierarchical local MRC over a lower field size.Comment: 6 pages, accepted to National Conference of Communications (NCC) 201

    Generalized Simple Regenerating Codes: Trading Sub-packetization and Fault Tolerance

    Full text link
    Maximum distance separable (MDS) codes have the optimal trade-off between storage efficiency and fault tolerance, which are widely used in distributed storage systems. As typical non-MDS codes, simple regenerating codes (SRCs) can achieve both smaller repair bandwidth and smaller repair locality than traditional MDS codes in repairing single-node erasure. In this paper, we propose {\em generalized simple regenerating codes} (GSRCs) that can support much more parameters than that of SRCs. We show that there is a trade-off between sub-packetization and fault tolerance in our GSRCs, and SRCs achieve a special point of the trade-off of GSRCs. We show that the fault tolerance of our GSRCs increases when the sub-packetization increases linearly. We also show that our GSRCs can locally repair any singe-symbol erasure and any single-node erasure, and the repair bandwidth of our GSRCs is smaller than that of the existing related codes
    corecore