41 research outputs found

    Coded DNN Watermark: Robustness against Pruning Models Using Constant Weight Code

    Get PDF
    Deep Neural Network (DNN) watermarking techniques are increasingly being used to protect the intellectual property of DNN models. Basically, DNN watermarking is a technique to insert side information into the DNN model without significantly degrading the performance of its original task. A pruning attack is a threat to DNN watermarking, wherein the less important neurons in the model are pruned to make it faster and more compact. As a result, removing the watermark from the DNN model is possible. This study investigates a channel coding approach to protect DNN watermarking against pruning attacks. The channel model differs completely from conventional models involving digital images. Determining the suitable encoding methods for DNN watermarking remains an open problem. Herein, we presented a novel encoding approach using constant weight codes to protect the DNN watermarking against pruning attacks. The experimental results confirmed that the robustness against pruning attacks could be controlled by carefully setting two thresholds for binary symbols in the codeword

    Righteous Remixes, Sacred Mashups: Rethinking Authority, Authenticity, and Originality in the Study of Religion

    Get PDF
    This dissertation sets out to place emergent theories of “remix” in conversation with scholarship exploring changes in the definitions and practices associated with the word “religion.” Through particular case studies, the dissertation analyzes the ways that certain contemporary creators, writers, and influencers have emerged as constructors of contemporary Buddhism. Specifically building upon the critiques of religion put forth by Jonathan Z. Smith, Russell T. McCutcheon, Brent Nongbri, Jane Iwamura, and others, I am concerned with how individuals who are not part of the religious studies scholarly community participate in the processes of constructing religion, and in this case, in constructing and contributing to changes in a specifically North American and European understanding of Buddhism. Utilizing an approach that centers on the art of metaphor, and employing a model for specifically studying cultural constructs via remix theory that I term Remix+/-, I explore the ways that a few influential leaders, including Stephen Batchelor, Osamu Tezuka, and Jon Kabat-Zinn, express and advocate for certain approaches to practices, rituals, and beliefs that are ostensibly related to historic forms of Buddhism. I argue that the ways they make their claims are best understood in relation to patterned metaphorical assumptions about religion. I further highlight the ways that these individuals are able to leverage technologies, rhetorics, and techniques in order to lay their claim – directly or indirectly – to authority, originality, and authenticity. Finally, I argue that these emergent leaders may be understood as exemplars not only of changes to Buddhism that are occurring today, but of what is likely to happen in the future with increasing speed. This speed and direction of change in “religion” is due to the affordances of digital technologies that intensify existing relations of power and amplify the views of those positioned, as these leaders are, to lay claim to certain linguistic, cultural, geographic, and technological resources as they participate in the construction of an emergent form of what they argue is Buddhism

    Recursion Polynomials of Unfolded Sequences

    Get PDF
    Watermarking digital media is one of the important chal- lenges for information hiding. Not only the watermark must be resistant to noise and against attempts of modification, legitimate users should not be aware that it is embedded in the media. One of the techniques for watermarking is using an special variant of spread-spectrum tech- nique, called frequency hopping. It requires ensembles of periodic binary sequences with low off-peak autocorrelation and cross-correlation. Un- fortunately, they are quite rare and difficult to find. The small Kasami, Kamaletdinov, and Extended Rational Cycle constructions are versatile, because they can also be converted into Costas-like arrays for frequency hopping. We study the implementation of such ensembles using linear feedback shift registers. This permits an efficient generation of sequences and arrays in real time in FPGAs. Such an implementation requires minimal memory usage and permits dynamic updating of sequences or arrays. The aim of our work was to broaden current knowledge of sets of se- quences with low correlation studying their implementation using linear feedback shift registers. A remarkable feature of these families is their similarities in terms of implementation and it may open new way to characterize sequences with low correlation, making it easier to gener- ate them. It also validates some conjectures made by Moreno and Tirkel about arrays constructed using the method of composition.Supported by ConsejerĂ­a de Universidades e InvestigaciĂłn, Medio Ambiente y PolĂ­tica Social, Gobierno de Cantabria (ref. VP34

    Time bounds for streaming problems

    Get PDF

    A Deterministic Construction for Jointly Designed Quasicyclic LDPC Coded-Relay Cooperation

    Get PDF
    This correspondence presents a jointly designed quasicyclic (QC) low-density parity-check (LDPC) coded-relay cooperation with joint-iterative decoding in the destination node. Firstly, a design-theoretic construction of QC-LDPC codes based on a combinatoric design approach known as optical orthogonal codes (OOC) is presented. Proposed OOC-based construction gives three classes of binary QC-LDPC codes with no length-4 cycles by utilizing some known ingredients including binary matrix dispersion of elements of finite field, incidence matrices, and circulant decomposition. Secondly, the proposed OOC-based construction gives an effective method to jointly design length-4 cycles free QC-LDPC codes for coded-relay cooperation, where sum-product algorithm- (SPA-) based joint-iterative decoding is used to decode the corrupted sequences coming from the source or relay nodes in different time frames over constituent Rayleigh fading channels. Based on the theoretical analysis and simulation results, proposed QC-LDPC coded-relay cooperations outperform their competitors under same conditions over the Rayleigh fading channel with additive white Gaussian noise

    DNA–based data storage system

    Get PDF
    Despite the many advances in traditional data recording techniques, the surge of Big Data platforms and energy conservation issues has imposed new challenges to the storage community in terms of identifying extremely high volume, non-volatile and durable recording media. The potential for using macromolecules for ultra-dense storage was recognized as early as 1959 when Richard Feynman outlined his vision for nanotechnology in a lecture, “There is plenty of room at the bottom”. Among known macromolecules, DNA is unique insofar as it lends itself to implementations of non-volatile recording media of outstanding integrity and extremely high storage capacity. The basic system implementation steps for DNA-based data storage systems include synthesizing DNA strings that contain user information and subsequently retrieving them via high-throughput sequencing technologies. Existing architectures enable reading and writing but do not offer random-access and error-free data recovery from low-cost, portable devices, which is crucial for making the storage technology competitive with classical recorders. In this work we advance the field of macromolecular data storage in three directions. First, we introduce the notion of weakly mutually uncorrelated (WMU) sequences. WMU sequences are characterized by the property that no sufficiently long suffix of one sequence is the prefix of the same or another sequence. For this purpose, WMU sequences used for primer design in DNAbased data storage systems are also required to be at large mutual Hamming distance from each other, have balanced compositions of symbols, and avoid primer-dimer byproducts. We derive bounds on the size of WMU and various constrained WMU codes and present a number of constructions for balanced, error-correcting, primer-dimer free WMU codes using Dyck paths, prefixsynchronized and cyclic codes. Second, we describe the first DNA-based storage architecture that enables random access to data blocks and rewriting of information stored at arbitrary locations within the blocks. The newly developed architecture overcomes drawbacks of existing read-only methods that require decoding the whole file in order to read one data fragment. Our system is based on the newly developed WMU coding techniques and accompanying DNA editing methods that ensure data reliability, specificity and sensitivity of access, and at the same time provide exceptionally high data storage capacity. As a proof of concept, we encoded parts of the Wikipedia pages of six universities in the USA, and selected and edited parts of the text written in DNA corresponding to three of these schools. The results suggest that DNA is a versatile media suitable for both ultrahigh density archival and rewritable storage applications. Third, we demonstrate for the first time that a portable, random-access platform may be implemented in practice using nanopore sequencers. Every solution for DNA-based data storage systems so far has exclusively focused on Illumina sequencing devices, but such sequencers are expensive and designed for laboratory use only. Instead, we propose using a new technology, MinION–Oxford Nanopore’s handheld sequencer. Nanopore sequencing is fast and cheap, but it results in reads with high error rates. To deal with this issue, we designed an integrated processing pipeline that encodes data to avoid costly synthesis and sequencing errors, enables random access through addressing, and leverages efficient portable sequencing via new iterative alignment and deletion error-correcting codes. As a proof of concept, we stored and sequenced around 3.6 kB of binary data that includes two compressed images (a Citizen Kane poster and a smiley face emoji), using a portable data storage system, and obtained error-free read-outs
    corecore