10,698 research outputs found

    Optimal Euclidean spanners: really short, thin and lanky

    Full text link
    In a seminal STOC'95 paper, titled "Euclidean spanners: short, thin and lanky", Arya et al. devised a construction of Euclidean (1+\eps)-spanners that achieves constant degree, diameter O(logn)O(\log n), and weight O(log2n)ω(MST)O(\log^2 n) \cdot \omega(MST), and has running time O(nlogn)O(n \cdot \log n). This construction applies to nn-point constant-dimensional Euclidean spaces. Moreover, Arya et al. conjectured that the weight bound can be improved by a logarithmic factor, without increasing the degree and the diameter of the spanner, and within the same running time. This conjecture of Arya et al. became a central open problem in the area of Euclidean spanners. In this paper we resolve the long-standing conjecture of Arya et al. in the affirmative. Specifically, we present a construction of spanners with the same stretch, degree, diameter, and running time, as in Arya et al.'s result, but with optimal weight O(logn)ω(MST)O(\log n) \cdot \omega(MST). Moreover, our result is more general in three ways. First, we demonstrate that the conjecture holds true not only in constant-dimensional Euclidean spaces, but also in doubling metrics. Second, we provide a general tradeoff between the three involved parameters, which is tight in the entire range. Third, we devise a transformation that decreases the lightness of spanners in general metrics, while keeping all their other parameters in check. Our main result is obtained as a corollary of this transformation.Comment: A technical report of this paper was available online from April 4, 201

    Coherence Optimization and Best Complex Antipodal Spherical Codes

    Full text link
    Vector sets with optimal coherence according to the Welch bound cannot exist for all pairs of dimension and cardinality. If such an optimal vector set exists, it is an equiangular tight frame and represents the solution to a Grassmannian line packing problem. Best Complex Antipodal Spherical Codes (BCASCs) are the best vector sets with respect to the coherence. By extending methods used to find best spherical codes in the real-valued Euclidean space, the proposed approach aims to find BCASCs, and thereby, a complex-valued vector set with minimal coherence. There are many applications demanding vector sets with low coherence. Examples are not limited to several techniques in wireless communication or to the field of compressed sensing. Within this contribution, existing analytical and numerical approaches for coherence optimization of complex-valued vector spaces are summarized and compared to the proposed approach. The numerically obtained coherence values improve previously reported results. The drawback of increased computational effort is addressed and a faster approximation is proposed which may be an alternative for time critical cases
    corecore