103 research outputs found

    Edge-disjoint Hamilton cycles in graphs

    Get PDF
    In this paper we give an approximate answer to a question of Nash-Williams from 1970: we show that for every \alpha > 0, every sufficiently large graph on n vertices with minimum degree at least (1/2 + \alpha)n contains at least n/8 edge-disjoint Hamilton cycles. More generally, we give an asymptotically best possible answer for the number of edge-disjoint Hamilton cycles that a graph G with minimum degree \delta must have. We also prove an approximate version of another long-standing conjecture of Nash-Williams: we show that for every \alpha > 0, every (almost) regular and sufficiently large graph on n vertices with minimum degree at least (1/2+α)n(1/2 + \alpha)n can be almost decomposed into edge-disjoint Hamilton cycles.Comment: Minor Revisio

    Primer for the algebraic geometry of sandpiles

    Full text link
    The Abelian Sandpile Model (ASM) is a game played on a graph realizing the dynamics implicit in the discrete Laplacian matrix of the graph. The purpose of this primer is to apply the theory of lattice ideals from algebraic geometry to the Laplacian matrix, drawing out connections with the ASM. An extended summary of the ASM and of the required algebraic geometry is provided. New results include a characterization of graphs whose Laplacian lattice ideals are complete intersection ideals; a new construction of arithmetically Gorenstein ideals; a generalization to directed multigraphs of a duality theorem between elements of the sandpile group of a graph and the graph's superstable configurations (parking functions); and a characterization of the top Betti number of the minimal free resolution of the Laplacian lattice ideal as the number of elements of the sandpile group of least degree. A characterization of all the Betti numbers is conjectured.Comment: 45 pages, 14 figures. v2: corrected typo

    On the number of spanning trees in random regular graphs

    Get PDF
    Let d3d \geq 3 be a fixed integer. We give an asympotic formula for the expected number of spanning trees in a uniformly random dd-regular graph with nn vertices. (The asymptotics are as nn\to\infty, restricted to even nn if dd is odd.) We also obtain the asymptotic distribution of the number of spanning trees in a uniformly random cubic graph, and conjecture that the corresponding result holds for arbitrary (fixed) dd. Numerical evidence is presented which supports our conjecture.Comment: 26 pages, 1 figure. To appear in the Electronic Journal of Combinatorics. This version addresses referee's comment
    corecore