97 research outputs found

    Construction of Highly Nonlinear Resilient Boolean Functions Satisfying Strict Avalanche Criterion

    Get PDF
    A method is proposed to construct resilient Boolean functions on nn variables (nn even) satisfying strict avalanche criterion (SAC) with nonlinearity >2n12n/2>2^{n-1}-2^{n/2}. A large class of cryptographic Boolean functions which were not known earlier are obtained

    Random generation of Boolean functions with high degree of correlation immunity, Journal of Telecommunications and Information Technology, 2006, nr 3

    Get PDF
    In recent years a cryptographic community is paying a lot of attention to the constructions of so called resilient functions for use mainly in stream cipher systems. Very little work however has been devoted to random generation of such functions. This paper tries to fill that gap and presents an algorithm that can generate at random highly nonlinear resilient functions. Generated functions are analyzed and compared to the results obtained from the best know constructions and some upper bounds on nonlinearity and resiliency. It is shown that randomly generated functions achieve in most cases results equal to the best known designs, while in other cases fall just behind such constructs. It is argued that the algorithm can perhaps be used to prove the existence of some resilient functions for which no mathematical prove has been given so far

    Investigations in the design and analysis of key-stream generators

    Get PDF
    iv+113hlm.;24c

    On applications of simulated annealing to cryptology

    Get PDF
    Boolean functions are critical building blocks of symmetric-key ciphers. In most cases, the security of a cipher against a particular kind of attacks can be explained by the existence of certain properties of its underpinning Boolean functions. Therefore, the design of appropriate functions has received significant attention from researchers for several decades. Heuristic methods have become very powerful tools for designing such functions. In this thesis, we apply simulated annealing methods to construct Boolean functions with particular properties. Our results meet or exceed the best results of available theoretical constructions and/or heuristic searches in the literature, including a 10-variable balanced Boolean function with resiliency degree 2, algebraic degree 7, and nonlinearity 488 for the first time. This construction affirmatively answers the open problem about the existence of such functions. This thesis also includes results of cryptanalysis for symmetric ciphers, such as Geffe cipher and TREYFER cipher

    Large substitution boxes with efficient combinational implementations

    Get PDF
    At a fundamental level, the security of symmetric key cryptosystems ties back to Claude Shannon\u27s properties of confusion and diffusion. Confusion can be defined as the complexity of the relationship between the secret key and ciphertext, and diffusion can be defined as the degree to which the influence of a single input plaintext bit is spread throughout the resulting ciphertext. In constructions of symmetric key cryptographic primitives, confusion and diffusion are commonly realized with the application of nonlinear and linear operations, respectively. The Substitution-Permutation Network design is one such popular construction adopted by the Advanced Encryption Standard, among other block ciphers, which employs substitution boxes, or S-boxes, for nonlinear behavior. As a result, much research has been devoted to improving the cryptographic strength and implementation efficiency of S-boxes so as to prohibit cryptanalysis attacks that exploit weak constructions and enable fast and area-efficient hardware implementations on a variety of platforms. To date, most published and standardized S-boxes are bijective functions on elements of 4 or 8 bits. In this work, we explore the cryptographic properties and implementations of 8 and 16 bit S-boxes. We study the strength of these S-boxes in the context of Boolean functions and investigate area-optimized combinational hardware implementations. We then present a variety of new 8 and 16 bit S-boxes that have ideal cryptographic properties and enable low-area combinational implementations

    Journal of Telecommunications and Information Technology, 2006, nr 3

    Get PDF
    kwartalni
    corecore