3 research outputs found

    Construction of boundary element models in bioelectromagnetism

    Get PDF
    Multisensor electro- and magnetoencephalographic (EEG and MEG) as well as electro- and magnetocardiographic (ECG and MCG) recordings have been proved useful in noninvasively extracting information on bioelectric excitation. The anatomy of the patient needs to be taken into account, when excitation sites are localized by solving the inverse problem. In this work, a methodology has been developed to construct patient specific boundary element models for bioelectromagnetic inverse problems from magnetic resonance (MR) data volumes as well as from two orthogonal X-ray projections. The process consists of three main steps: reconstruction of 3-D geometry, triangulation of reconstructed geometry, and registration of the model with a bioelectromagnetic measurement system. The 3-D geometry is reconstructed from MR data by matching a 3-D deformable boundary element template to images. The deformation is accomplished as an energy minimization process consisting of image and model based terms. The robustness of the matching is improved by multi-resolution and global-to-local approaches as well as using oriented distance maps. A boundary element template is also used when 3-D geometry is reconstructed from X-ray projections. The deformation is first accomplished in 2-D for the contours of simulated, built from the template, and real X-ray projections. The produced 2-D vector field is back-projected and interpolated on the 3-D template surface. A marching cube triangulation is computed for the reconstructed 3-D geometry. Thereafter, a non-iterative mesh-simplification method is applied. The method is based on the Voronoi-Delaunay duality on a 3-D surface with discrete distance measures. Finally, the triangulated surfaces are registered with a bioelectromagnetic measurement utilizing markers. More than fifty boundary element models have been successfully constructed from MR images using the methods developed in this work. A simulation demonstrated the feasibility of X-ray reconstruction; some practical problems of X-ray imaging need to be solved to begin tests with real data.reviewe

    Cardiomagnetic source imaging

    Get PDF
    Magnetocardiographic (MCG) source imaging has received increasing interest in recent years. With a high enough localization accuracy of the current sources in the heart, valuable information can be provided, e.g., for the pre-ablative evaluation of arrhythmia patients. Furthermore, preliminary studies indicate that ischemic areas, i.e. areas which are suffering from lack of oxygen, and infarcted regions could be localized from multichannel MCG recordings. In this thesis, the accuracy of cardiomagnetic source imaging results, obtained by using different current source models, was investigated. In addition, the effect of the torso model on the localization accuracy was examined. In some studies, also body surface potential mapping (BSPM) data were used for comparison purposes. A high impact was given to clinical validation, i.e. how the calculation methods would work in patients. The equivalent current dipole (ECD) source model was found to produce accurate (within 3-11 mm) localizations of focal current sources in a thorax phantom and in 15 patients with a non-magnetic stimulation catheter in the heart. The accuracy was found to depend on the signal-to-noise ratio and on the goodness of fit of the localizations. The corresponding accuracy determined from simultaneous multichannel BSPM recordings in 10 patients was 25 mm. In order to localize wider source regions in the heart, distributed source models were also investigated in the thesis. Current density estimates (CDEs) were calculated in the catheter patients and in 13 patients with coronary artery disease (CAD). Promising results were obtained by using second-order Tikhonov regularization in the calculations. CDEs were found to localize both myocardial ischemia in single-vessel CAD patients, as well as more complex chronic ischemia in three-vessel CAD patients. In addition to the ECD and CDE source models, the uniform double layer (UDL) model was used in the source imaging studies. With the UDL model, the whole depolarization of the ventricles can be represented with a single inverse solution. In the validation of the activation time maps calculated from MCG and BSPM recordings, invasively measured epicardial electrograms were used to construct the reference epicardial activation times. The overall patterns of activation in the reference data were reproduced relatively well in the calculated activation time maps. The high quality of the inverse solutions obtained in this thesis prompts the use of cardiomagnetic source imaging in several clinical applications, such as in electrophysiological studies and in the estimation of myocardial viability.reviewe
    corecore