8,651 research outputs found

    An Improved Observation Model for Super-Resolution under Affine Motion

    Full text link
    Super-resolution (SR) techniques make use of subpixel shifts between frames in an image sequence to yield higher-resolution images. We propose an original observation model devoted to the case of non isometric inter-frame motion as required, for instance, in the context of airborne imaging sensors. First, we describe how the main observation models used in the SR literature deal with motion, and we explain why they are not suited for non isometric motion. Then, we propose an extension of the observation model by Elad and Feuer adapted to affine motion. This model is based on a decomposition of affine transforms into successive shear transforms, each one efficiently implemented by row-by-row or column-by-column 1-D affine transforms. We demonstrate on synthetic and real sequences that our observation model incorporated in a SR reconstruction technique leads to better results in the case of variable scale motions and it provides equivalent results in the case of isometric motions

    Explicit constructions and properties of generalized shift-invariant systems in L2(R)L^2(\mathbb{R})

    Get PDF
    Generalized shift-invariant (GSI) systems, originally introduced by Hern\'andez, Labate & Weiss and Ron & Shen, provide a common frame work for analysis of Gabor systems, wavelet systems, wave packet systems, and other types of structured function systems. In this paper we analyze three important aspects of such systems. First, in contrast to the known cases of Gabor frames and wavelet frames, we show that for a GSI system forming a frame, the Calder\'on sum is not necessarily bounded by the lower frame bound. We identify a technical condition implying that the Calder\'on sum is bounded by the lower frame bound and show that under a weak assumption the condition is equivalent with the local integrability condition introduced by Hern\'andez et al. Second, we provide explicit and general constructions of frames and dual pairs of frames having the GSI-structure. In particular, the setup applies to wave packet systems and in contrast to the constructions in the literature, these constructions are not based on characteristic functions in the Fourier domain. Third, our results provide insight into the local integrability condition (LIC).Comment: Adv. Comput. Math., to appea

    Incarnations of Berthelot's conjecture

    Full text link
    In this article we give a survey of the various forms of Berthelot's conjecture and some of the implications between them. By proving some comparison results between pushforwards of overconvergent isocrystals and those of arithmetic D\mathcal{D}-modules, we manage to deduce some cases of the conjecture from Caro's results on the stability of overcoherence under pushforward via a smooth and proper morphism of varieties. In particular, we show that Ogus' convergent pushforward of an overconvergent FF-isocrystal under a smooth and projective morphism is overconvergent.Comment: 17 pages. Final version, published in J. Number Theor

    Metric combinatorics of convex polyhedra: cut loci and nonoverlapping unfoldings

    Full text link
    This paper is a study of the interaction between the combinatorics of boundaries of convex polytopes in arbitrary dimension and their metric geometry. Let S be the boundary of a convex polytope of dimension d+1, or more generally let S be a `convex polyhedral pseudomanifold'. We prove that S has a polyhedral nonoverlapping unfolding into R^d, so the metric space S is obtained from a closed (usually nonconvex) polyhedral ball in R^d by identifying pairs of boundary faces isometrically. Our existence proof exploits geodesic flow away from a source point v in S, which is the exponential map to S from the tangent space at v. We characterize the `cut locus' (the closure of the set of points in S with more than one shortest path to v) as a polyhedral complex in terms of Voronoi diagrams on facets. Analyzing infinitesimal expansion of the wavefront consisting of points at constant distance from v on S produces an algorithmic method for constructing Voronoi diagrams in each facet, and hence the unfolding of S. The algorithm, for which we provide pseudocode, solves the discrete geodesic problem. Its main construction generalizes the source unfolding for boundaries of 3-polytopes into R^2. We present conjectures concerning the number of shortest paths on the boundaries of convex polyhedra, and concerning continuous unfolding of convex polyhedra. We also comment on the intrinsic non-polynomial complexity of nonconvex polyhedral manifolds.Comment: 47 pages; 21 PostScript (.eps) figures, most in colo
    • …
    corecore