1,704 research outputs found

    The inverse of the star-discrepancy problem and the generation of pseudo-random numbers

    Full text link
    The inverse of the star-discrepancy problem asks for point sets PN,sP_{N,s} of size NN in the ss-dimensional unit cube [0,1]s[0,1]^s whose star-discrepancy Dβˆ—(PN,s)D^\ast(P_{N,s}) satisfies Dβˆ—(PN,s)≀Cs/N,D^\ast(P_{N,s}) \le C \sqrt{s/N}, where C>0C> 0 is a constant independent of NN and ss. The first existence results in this direction were shown by Heinrich, Novak, Wasilkowski, and Wo\'{z}niakowski in 2001, and a number of improvements have been shown since then. Until now only proofs that such point sets exist are known. Since such point sets would be useful in applications, the big open problem is to find explicit constructions of suitable point sets PN,sP_{N,s}. We review the current state of the art on this problem and point out some connections to pseudo-random number generators

    Recent advances in higher order quasi-Monte Carlo methods

    Full text link
    In this article we review some of recent results on higher order quasi-Monte Carlo (HoQMC) methods. After a seminal work by Dick (2007, 2008) who originally introduced the concept of HoQMC, there have been significant theoretical progresses on HoQMC in terms of discrepancy as well as multivariate numerical integration. Moreover, several successful and promising applications of HoQMC to partial differential equations with random coefficients and Bayesian estimation/inversion problems have been reported recently. In this article we start with standard quasi-Monte Carlo methods based on digital nets and sequences in the sense of Niederreiter, and then move onto their higher order version due to Dick. The Walsh analysis of smooth functions plays a crucial role in developing the theory of HoQMC, and the aim of this article is to provide a unified picture on how the Walsh analysis enables recent developments of HoQMC both for discrepancy and numerical integration

    Some Results on the Complexity of Numerical Integration

    Full text link
    This is a survey (21 pages, 124 references) written for the MCQMC 2014 conference in Leuven, April 2014. We start with the seminal paper of Bakhvalov (1959) and end with new results on the curse of dimension and on the complexity of oscillatory integrals. Some small errors of earlier versions are corrected
    • …
    corecore