9 research outputs found

    Linear Orderings of Sparse Graphs

    Get PDF
    The Linear Ordering problem consists in finding a total ordering of the vertices of a directed graph such that the number of backward arcs, i.e., arcs whose heads precede their tails in the ordering, is minimized. A minimum set of backward arcs corresponds to an optimal solution to the equivalent Feedback Arc Set problem and forms a minimum Cycle Cover. Linear Ordering and Feedback Arc Set are classic NP-hard optimization problems and have a wide range of applications. Whereas both problems have been studied intensively on dense graphs and tournaments, not much is known about their structure and properties on sparser graphs. There are also only few approximative algorithms that give performance guarantees especially for graphs with bounded vertex degree. This thesis fills this gap in multiple respects: We establish necessary conditions for a linear ordering (and thereby also for a feedback arc set) to be optimal, which provide new and fine-grained insights into the combinatorial structure of the problem. From these, we derive a framework for polynomial-time algorithms that construct linear orderings which adhere to one or more of these conditions. The analysis of the linear orderings produced by these algorithms is especially tailored to graphs with bounded vertex degrees of three and four and improves on previously known upper bounds. Furthermore, the set of necessary conditions is used to implement exact and fast algorithms for the Linear Ordering problem on sparse graphs. In an experimental evaluation, we finally show that the property-enforcing algorithms produce linear orderings that are very close to the optimum and that the exact representative delivers solutions in a timely manner also in practice. As an additional benefit, our results can be applied to the Acyclic Subgraph problem, which is the complementary problem to Feedback Arc Set, and provide insights into the dual problem of Feedback Arc Set, the Arc-Disjoint Cycles problem

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF

    Multivariate Fine-Grained Complexity of Longest Common Subsequence

    No full text
    We revisit the classic combinatorial pattern matching problem of finding a longest common subsequence (LCS). For strings xx and yy of length nn, a textbook algorithm solves LCS in time O(n2)O(n^2), but although much effort has been spent, no O(n2ε)O(n^{2-\varepsilon})-time algorithm is known. Recent work indeed shows that such an algorithm would refute the Strong Exponential Time Hypothesis (SETH) [Abboud, Backurs, Vassilevska Williams + Bringmann, K\"unnemann FOCS'15]. Despite the quadratic-time barrier, for over 40 years an enduring scientific interest continued to produce fast algorithms for LCS and its variations. Particular attention was put into identifying and exploiting input parameters that yield strongly subquadratic time algorithms for special cases of interest, e.g., differential file comparison. This line of research was successfully pursued until 1990, at which time significant improvements came to a halt. In this paper, using the lens of fine-grained complexity, our goal is to (1) justify the lack of further improvements and (2) determine whether some special cases of LCS admit faster algorithms than currently known. To this end, we provide a systematic study of the multivariate complexity of LCS, taking into account all parameters previously discussed in the literature: the input size n:=max{x,y}n:=\max\{|x|,|y|\}, the length of the shorter string m:=min{x,y}m:=\min\{|x|,|y|\}, the length LL of an LCS of xx and yy, the numbers of deletions δ:=mL\delta := m-L and Δ:=nL\Delta := n-L, the alphabet size, as well as the numbers of matching pairs MM and dominant pairs dd. For any class of instances defined by fixing each parameter individually to a polynomial in terms of the input size, we prove a SETH-based lower bound matching one of three known algorithms. Specifically, we determine the optimal running time for LCS under SETH as (n+min{d,δΔ,δm})1±o(1)(n+\min\{d, \delta \Delta, \delta m\})^{1\pm o(1)}. [...
    corecore