1,433 research outputs found

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Deep Dictionary Learning: A PARametric NETwork Approach

    Full text link
    Deep dictionary learning seeks multiple dictionaries at different image scales to capture complementary coherent characteristics. We propose a method for learning a hierarchy of synthesis dictionaries with an image classification goal. The dictionaries and classification parameters are trained by a classification objective, and the sparse features are extracted by reducing a reconstruction loss in each layer. The reconstruction objectives in some sense regularize the classification problem and inject source signal information in the extracted features. The performance of the proposed hierarchical method increases by adding more layers, which consequently makes this model easier to tune and adapt. The proposed algorithm furthermore, shows remarkably lower fooling rate in presence of adversarial perturbation. The validation of the proposed approach is based on its classification performance using four benchmark datasets and is compared to a CNN of similar size

    Deep Graph-Convolutional Image Denoising

    Full text link
    Non-local self-similarity is well-known to be an effective prior for the image denoising problem. However, little work has been done to incorporate it in convolutional neural networks, which surpass non-local model-based methods despite only exploiting local information. In this paper, we propose a novel end-to-end trainable neural network architecture employing layers based on graph convolution operations, thereby creating neurons with non-local receptive fields. The graph convolution operation generalizes the classic convolution to arbitrary graphs. In this work, the graph is dynamically computed from similarities among the hidden features of the network, so that the powerful representation learning capabilities of the network are exploited to uncover self-similar patterns. We introduce a lightweight Edge-Conditioned Convolution which addresses vanishing gradient and over-parameterization issues of this particular graph convolution. Extensive experiments show state-of-the-art performance with improved qualitative and quantitative results on both synthetic Gaussian noise and real noise

    Stray Light Compensation in Optical Systems

    Get PDF
    All optical equipment suffers from a phenomenon called stray light, which is defined as unwanted light in an optical system. Images contaminated by stray light tend to have lower contrast and reduced detail, which motivates the need for reducing it in many applications. This master thesis considers computational stray light compensation in digital cameras. In particular, the purpose is to reduce stray light in surveillance cameras developed by Axis Communications. We follow in the spirit of other digital stray light compensation approaches, in which measurements are fit to a parametric shift-variant point spread function (PSF) describing the stray light characteristics of the optical system. The observed contaminated image is modelled as an underlying ideal image convolved with the PSF. Once the PSF has been determined, a deconvolution is performed to obtain a restored image. We provide comparisons of a few deconvolution strategies and their performances regarding the restoration of images. Also, we discuss different techniques for decreasing the computational cost of the compensation. An experiment in which the images are compared to a ground-truth is proposed to objectively measure performance. The results indicate that the restored images are closer to the ground-truth compared to the observed image, which implies that the stray light compensation is successful.se bilaga
    • …
    corecore