12,680 research outputs found

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Solving for multi-class using orthogonal coding matrices

    Full text link
    A common method of generalizing binary to multi-class classification is the error correcting code (ECC). ECCs may be optimized in a number of ways, for instance by making them orthogonal. Here we test two types of orthogonal ECCs on seven different datasets using three types of binary classifier and compare them with three other multi-class methods: 1 vs. 1, one-versus-the-rest and random ECCs. The first type of orthogonal ECC, in which the codes contain no zeros, admits a fast and simple method of solving for the probabilities. Orthogonal ECCs are always more accurate than random ECCs as predicted by recent literature. Improvments in uncertainty coefficient (U.C.) range between 0.4--17.5% (0.004--0.139, absolute), while improvements in Brier score between 0.7--10.7%. Unfortunately, orthogonal ECCs are rarely more accurate than 1 vs. 1. Disparities are worst when the methods are paired with logistic regression, with orthogonal ECCs never beating 1 vs. 1. When the methods are paired with SVM, the losses are less significant, peaking at 1.5%, relative, 0.011 absolute in uncertainty coefficient and 6.5% in Brier scores. Orthogonal ECCs are always the fastest of the five multi-class methods when paired with linear classifiers. When paired with a piecewise linear classifier, whose classification speed does not depend on the number of training samples, classifications using orthogonal ECCs were always more accurate than the the remaining three methods and also faster than 1 vs. 1. Losses against 1 vs. 1 here were higher, peaking at 1.9% (0.017, absolute), in U.C. and 39% in Brier score. Gains in speed ranged between 1.1% and over 100%. Whether the speed increase is worth the penalty in accuracy will depend on the application
    • …
    corecore