1,049 research outputs found

    Constructing Unrestricted Adversarial Examples with Generative Models

    Full text link
    Adversarial examples are typically constructed by perturbing an existing data point within a small matrix norm, and current defense methods are focused on guarding against this type of attack. In this paper, we propose unrestricted adversarial examples, a new threat model where the attackers are not restricted to small norm-bounded perturbations. Different from perturbation-based attacks, we propose to synthesize unrestricted adversarial examples entirely from scratch using conditional generative models. Specifically, we first train an Auxiliary Classifier Generative Adversarial Network (AC-GAN) to model the class-conditional distribution over data samples. Then, conditioned on a desired class, we search over the AC-GAN latent space to find images that are likely under the generative model and are misclassified by a target classifier. We demonstrate through human evaluation that unrestricted adversarial examples generated this way are legitimate and belong to the desired class. Our empirical results on the MNIST, SVHN, and CelebA datasets show that unrestricted adversarial examples can bypass strong adversarial training and certified defense methods designed for traditional adversarial attacks.Comment: Neural Information Processing Systems (NeurIPS 2018

    Adversarial Image Translation: Unrestricted Adversarial Examples in Face Recognition Systems

    Full text link
    Thanks to recent advances in deep neural networks (DNNs), face recognition systems have become highly accurate in classifying a large number of face images. However, recent studies have found that DNNs could be vulnerable to adversarial examples, raising concerns about the robustness of such systems. Adversarial examples that are not restricted to small perturbations could be more serious since conventional certified defenses might be ineffective against them. To shed light on the vulnerability to such adversarial examples, we propose a flexible and efficient method for generating unrestricted adversarial examples using image translation techniques. Our method enables us to translate a source image into any desired facial appearance with large perturbations to deceive target face recognition systems. Our experimental results indicate that our method achieved about 9090 and 80%80\% attack success rates under white- and black-box settings, respectively, and that the translated images are perceptually realistic and maintain the identifiability of the individual while the perturbations are large enough to bypass certified defenses.Comment: Kazuya Kakizaki and Kosuke Yoshida share equal contributions. Accepted at AAAI Workshop on Artificial Intelligence Safety (2020

    AT-GAN: An Adversarial Generator Model for Non-constrained Adversarial Examples

    Full text link
    Despite the rapid development of adversarial machine learning, most adversarial attack and defense researches mainly focus on the perturbation-based adversarial examples, which is constrained by the input images. In comparison with existing works, we propose non-constrained adversarial examples, which are generated entirely from scratch without any constraint on the input. Unlike perturbation-based attacks, or the so-called unrestricted adversarial attack which is still constrained by the input noise, we aim to learn the distribution of adversarial examples to generate non-constrained but semantically meaningful adversarial examples. Following this spirit, we propose a novel attack framework called AT-GAN (Adversarial Transfer on Generative Adversarial Net). Specifically, we first develop a normal GAN model to learn the distribution of benign data, and then transfer the pre-trained GAN model to estimate the distribution of adversarial examples for the target model. In this way, AT-GAN can learn the distribution of adversarial examples that is very close to the distribution of real data. To our knowledge, this is the first work of building an adversarial generator model that could produce adversarial examples directly from any input noise. Extensive experiments and visualizations show that the proposed AT-GAN can very efficiently generate diverse adversarial examples that are more realistic to human perception. In addition, AT-GAN yields higher attack success rates against adversarially trained models under white-box attack setting and exhibits moderate transferability against black-box models.Comment: 15 pages, 6 figure

    Semantic Adversarial Attacks: Parametric Transformations That Fool Deep Classifiers

    Full text link
    Deep neural networks have been shown to exhibit an intriguing vulnerability to adversarial input images corrupted with imperceptible perturbations. However, the majority of adversarial attacks assume global, fine-grained control over the image pixel space. In this paper, we consider a different setting: what happens if the adversary could only alter specific attributes of the input image? These would generate inputs that might be perceptibly different, but still natural-looking and enough to fool a classifier. We propose a novel approach to generate such `semantic' adversarial examples by optimizing a particular adversarial loss over the range-space of a parametric conditional generative model. We demonstrate implementations of our attacks on binary classifiers trained on face images, and show that such natural-looking semantic adversarial examples exist. We evaluate the effectiveness of our attack on synthetic and real data, and present detailed comparisons with existing attack methods. We supplement our empirical results with theoretical bounds that demonstrate the existence of such parametric adversarial examples.Comment: Accepted to International Conference on Computer Vision, (ICCV) 201

    Excessive Invariance Causes Adversarial Vulnerability

    Full text link
    Despite their impressive performance, deep neural networks exhibit striking failures on out-of-distribution inputs. One core idea of adversarial example research is to reveal neural network errors under such distribution shifts. We decompose these errors into two complementary sources: sensitivity and invariance. We show deep networks are not only too sensitive to task-irrelevant changes of their input, as is well-known from epsilon-adversarial examples, but are also too invariant to a wide range of task-relevant changes, thus making vast regions in input space vulnerable to adversarial attacks. We show such excessive invariance occurs across various tasks and architecture types. On MNIST and ImageNet one can manipulate the class-specific content of almost any image without changing the hidden activations. We identify an insufficiency of the standard cross-entropy loss as a reason for these failures. Further, we extend this objective based on an information-theoretic analysis so it encourages the model to consider all task-dependent features in its decision. This provides the first approach tailored explicitly to overcome excessive invariance and resulting vulnerabilities

    Unrestricted Adversarial Examples via Semantic Manipulation

    Full text link
    Machine learning models, especially deep neural networks (DNNs), have been shown to be vulnerable against adversarial examples which are carefully crafted samples with a small magnitude of the perturbation. Such adversarial perturbations are usually restricted by bounding their Lp\mathcal{L}_p norm such that they are imperceptible, and thus many current defenses can exploit this property to reduce their adversarial impact. In this paper, we instead introduce "unrestricted" perturbations that manipulate semantically meaningful image-based visual descriptors - color and texture - in order to generate effective and photorealistic adversarial examples. We show that these semantically aware perturbations are effective against JPEG compression, feature squeezing and adversarially trained model. We also show that the proposed methods can effectively be applied to both image classification and image captioning tasks on complex datasets such as ImageNet and MSCOCO. In addition, we conduct comprehensive user studies to show that our generated semantic adversarial examples are photorealistic to humans despite large magnitude perturbations when compared to other attacks.Comment: Accepted to ICLR 2020. First two authors contributed equally. Code: https://github.com/aisecure/Big-but-Invisible-Adversarial-Attack and Openreview: https://openreview.net/forum?id=Sye_OgHFw

    ShapeAdv: Generating Shape-Aware Adversarial 3D Point Clouds

    Full text link
    We introduce ShapeAdv, a novel framework to study shape-aware adversarial perturbations that reflect the underlying shape variations (e.g., geometric deformations and structural differences) in the 3D point cloud space. We develop shape-aware adversarial 3D point cloud attacks by leveraging the learned latent space of a point cloud auto-encoder where the adversarial noise is applied in the latent space. Specifically, we propose three different variants including an exemplar-based one by guiding the shape deformation with auxiliary data, such that the generated point cloud resembles the shape morphing between objects in the same category. Different from prior works, the resulting adversarial 3D point clouds reflect the shape variations in the 3D point cloud space while still being close to the original one. In addition, experimental evaluations on the ModelNet40 benchmark demonstrate that our adversaries are more difficult to defend with existing point cloud defense methods and exhibit a higher attack transferability across classifiers. Our shape-aware adversarial attacks are orthogonal to existing point cloud based attacks and shed light on the vulnerability of 3D deep neural networks.Comment: 3D Point Clouds, Adversarial Learnin

    Security Matters: A Survey on Adversarial Machine Learning

    Full text link
    Adversarial machine learning is a fast growing research area, which considers the scenarios when machine learning systems may face potential adversarial attackers, who intentionally synthesize input data to make a well-trained model to make mistake. It always involves a defending side, usually a classifier, and an attacking side that aims to cause incorrect output. The earliest studies on the adversarial examples for machine learning algorithms start from the information security area, which considers a much wider varieties of attacking methods. But recent research focus that popularized by the deep learning community places strong emphasis on how the "imperceivable" perturbations on the normal inputs may cause dramatic mistakes by the deep learning with supposed super-human accuracy. This paper serves to give a comprehensive introduction to a range of aspects of the adversarial deep learning topic, including its foundations, typical attacking and defending strategies, and some extended studies

    Structure-Preserving Transformation: Generating Diverse and Transferable Adversarial Examples

    Full text link
    Adversarial examples are perturbed inputs designed to fool machine learning models. Most recent works on adversarial examples for image classification focus on directly modifying pixels with minor perturbations. A common requirement in all these works is that the malicious perturbations should be small enough (measured by an L_p norm for some p) so that they are imperceptible to humans. However, small perturbations can be unnecessarily restrictive and limit the diversity of adversarial examples generated. Further, an L_p norm based distance metric ignores important structure patterns hidden in images that are important to human perception. Consequently, even the minor perturbation introduced in recent works often makes the adversarial examples less natural to humans. More importantly, they often do not transfer well and are therefore less effective when attacking black-box models especially for those protected by a defense mechanism. In this paper, we propose a structure-preserving transformation (SPT) for generating natural and diverse adversarial examples with extremely high transferability. The key idea of our approach is to allow perceptible deviation in adversarial examples while keeping structure patterns that are central to a human classifier. Empirical results on the MNIST and the fashion-MNIST datasets show that adversarial examples generated by our approach can easily bypass strong adversarial training. Further, they transfer well to other target models with no loss or little loss of successful attack rate.Comment: The AAAI-2019 Workshop on Artificial Intelligence for Cyber Security (AICS

    Adversarial Attack Type I: Cheat Classifiers by Significant Changes

    Full text link
    Despite the great success of deep neural networks, the adversarial attack can cheat some well-trained classifiers by small permutations. In this paper, we propose another type of adversarial attack that can cheat classifiers by significant changes. For example, we can significantly change a face but well-trained neural networks still recognize the adversarial and the original example as the same person. Statistically, the existing adversarial attack increases Type II error and the proposed one aims at Type I error, which are hence named as Type II and Type I adversarial attack, respectively. The two types of attack are equally important but are essentially different, which are intuitively explained and numerically evaluated. To implement the proposed attack, a supervised variation autoencoder is designed and then the classifier is attacked by updating the latent variables using gradient information. {Besides, with pre-trained generative models, Type I attack on latent spaces is investigated as well.} Experimental results show that our method is practical and effective to generate Type I adversarial examples on large-scale image datasets. Most of these generated examples can pass detectors designed for defending Type II attack and the strengthening strategy is only efficient with a specific type attack, both implying that the underlying reasons for Type I and Type II attack are different
    • …
    corecore