8 research outputs found

    Constructing reliable parametric images using enhanced GLLS for dynamic SPECT

    Get PDF
    Author name used in this publication: (David) Dagan Feng2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Adaptive fuzzy clustering in constructing parametric images for low SNR functional imaging

    Get PDF
    Author name used in this publication: Michael FulhamAuthor name used in this publication: Dagan FengRefereed conference paper2008-2009 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Adaptive fuzzy clustering in constructing parametric images for low SNR functional imaging

    Full text link
    Functional imaging can provide quantitative functional parameters to aid early diagnosis. Low signal to noise ratio (SNR) in functional imaging, especially for single photon emission computed tomography, poses a challenge in generating voxel-wise parametric images due to unreliable or physiologically meaningless parameter estimates. Our aim was to systematically investigate the performance of our recently proposed adaptive fuzzy clustering (AFC) technique, which applies standard fuzzy clustering to sub-divided data. Monte Carlo simulations were performed to generate noisy dynamic SPECT data with quantitative analysis for the fitting using the general linear least square method (GLLS) and enhanced model-aided GLLS methods. The results show that AFC substantially improves computational efficiency and obtains improved reliability as standard fuzzy clustering in estimating parametric images but is prone to slight underestimation. Normalization of tissue time activity curves may lead to severe overestimation for small structures when AFC is applied.Department of Electronic and Information EngineeringAuthor name used in this publication: Michael FulhamAuthor name used in this publication: Dagan FengRefereed conference pape

    Optimising the quantitative analysis in functional pet brain imaging

    Get PDF
    Patlak analysis techniques based on linear regression are often applied to positron emission tomography (PET) images to estimate a number of physiological parameters. The Patlak equation forms the basis for most extension works regarding graphical analysis of many tracers in quantitative PET measurements. Patlak analysis is primarily used to obtain the rate constant Ki, which represents the tracer transfer rate from plasma to the targeted tissue. One of the most common issues associated with Patlak analysis is the introduction of statistical noise, adopted originally from the images, that affects the slope of the graphical plot, leading to bias, and causes errors in the calculation of the rate constant Ki i. In this thesis, several statistical and noise reduction methods for 2 and 3 dimensional data are proposed and applied to simulated 18F-FDOPA brain images generated from a PET imaging simulator. The methods were applied to investigate whether their utilisation could reduce the bias and error caused by noisy images and improve the accuracy of quantitative measurements. Then, validation step extended to 18F-FDOPA PET images obtained from a clinical trial for Parkinson’s disease. The minimum averaged SE, SSE and the highest averaged reduction of noisy Ki values were found with the feasible generalised least squares (FGLS) model. Battle-Lemarie wavelet (BLW) showed significant change in data for the 3D PET images. Savitzky-Golay filtering (SGF) demonstrated significant change for most of the noise levels applied to 2D data. In clinical 18F-FDOPA images, the mean and standard deviation of standard error (SE) and sum-squared error (SSE) were significantly reduced in both baseline and after therapy groups. This work has the potential to be extended to other graphical analysis in quantitative PET data measurements

    Investigation of the Effects of Image Signal-to-Noise Ratio on TSPO PET Quantification of Neuroinflammation

    Get PDF
    Neuroinflammation may be imaged using positron emission tomography (PET) and the tracer [11C]-PK11195. Accurate and precise quantification of 18 kilodalton Translocator Protein (TSPO) binding parameters in the brain has proven difficult with this tracer, due to an unfavourable combination of low target concentration in tissue, low brain uptake of the tracer and relatively high non-specific binding, all of which leads to higher levels of relative image noise. To address these limitations, research into new radioligands for the TSPO, with higher brain uptake and lower non-specific binding relative to [11C]-PK11195, is being conducted world-wide. However, factors other than radioligand properties are known to influence signal-to-noise ratio in quantitative PET studies, including the scanner sensitivity, image reconstruction algorithms and data analysis methodology. The aim of this thesis was to investigate and validate computational tools for predicting image noise in dynamic TSPO PET studies, and to employ those tools to investigate the factors that affect image SNR and reliability of TSPO quantification in the human brain. The feasibility of performing multiple (n≥40) independent Monte Carlo simulations for each dynamic [11C]-PK11195 frame- with realistic modelling of the radioactivity source, attenuation and PET tomograph geometries- was investigated. A Beowulf-type high performance computer cluster, constructed from commodity components, was found to be well suited to this task. Timing tests on a single desktop computer system indicated that a computer cluster capable of simulating an hour-long dynamic [11C]-PK11195 PET scan, with 40 independent repeats, and with a total simulation time of less than 6 weeks, could be constructed for less than 10,000 Australian dollars. A computer cluster containing 44 computing cores was therefore assembled, and a peak simulation rate of 2.84x105 photon pairs per second was achieved using the GEANT4 Application for Tomographic Emission (GATE) Monte Carlo simulation software. A simulated PET tomograph was developed in GATE that closely modelled the performance characteristics of several real-world clinical PET systems in terms of spatial resolution, sensitivity, scatter fraction and counting rate performance. The simulated PET system was validated using adaptations of the National Electrical Manufacturers Association (NEMA) quality assurance procedures within GATE. Image noise in dynamic TSPO PET scans was estimated by performing n=40 independent Monte Carlo simulations of an hour-long [11C]-PK11195 scan, and of an hour- long dynamic scan for a hypothetical TSPO ligand with double the brain activity concentration of [11C]-PK11195. From these data an analytical noise model was developed that allowed image noise to be predicted for any combination of brain tissue activity concentration and scan duration. The noise model was validated for the purpose of determining the precision of kinetic parameter estimates for TSPO PET. An investigation was made into the effects of activity concentration in tissue, radionuclide half-life, injected dose and compartmental model complexity on the reproducibility of kinetic parameters. Injecting 555 MBq of carbon-11 labelled TSPO tracer produced similar binding parameter precision to 185 MBq of fluorine-18, and a moderate (20%) reduction in precision was observed for the reduced carbon-11 dose of 370 MBq. Results indicated that a factor of 2 increase in frame count level (relative to [11C]-PK11195, and due for example to higher ligand uptake, injected dose or absolute scanner sensitivity) is required to obtain reliable binding parameter estimates for small regions of interest when fitting a two-tissue compartment, four-parameter compartmental model. However, compartmental model complexity had a similarly large effect, with the reduction of model complexity from the two-tissue compartment, four-parameter to a one-tissue compartment, two-parameter model producing a 78% reduction in coefficient of variation of the binding parameter estimates at each tissue activity level and region size studied. In summary, this thesis describes the development and validation of Monte Carlo methods for estimating image noise in dynamic TSPO PET scans, and analytical methods for predicting relative image noise for a wide range of tissue activity concentration and acquisition durations. The findings of this research suggest that a broader consideration of the kinetic properties of novel TSPO radioligands, with a view to selection of ligands that are potentially amenable to analysis with a simple one-tissue compartment model, is at least as important as efforts directed towards reducing image noise, such as higher brain uptake, in the search for the next generation of TSPO PET tracers

    Bibliography of Lewis Research Center technical publications announced in 1977

    Get PDF
    This compilation of abstracts describes and indexes over 780 technical reports resulting from the scientific and engineering work performed and managed by the Lewis Research Center in 1977. All the publications were announced in the 1977 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Documents cited include research reports, journal articles, conference presentations, patents and patent applications, and theses
    corecore