8,251 research outputs found

    Movement Analytics: Current Status, Application to Manufacturing, and Future Prospects from an AI Perspective

    Full text link
    Data-driven decision making is becoming an integral part of manufacturing companies. Data is collected and commonly used to improve efficiency and produce high quality items for the customers. IoT-based and other forms of object tracking are an emerging tool for collecting movement data of objects/entities (e.g. human workers, moving vehicles, trolleys etc.) over space and time. Movement data can provide valuable insights like process bottlenecks, resource utilization, effective working time etc. that can be used for decision making and improving efficiency. Turning movement data into valuable information for industrial management and decision making requires analysis methods. We refer to this process as movement analytics. The purpose of this document is to review the current state of work for movement analytics both in manufacturing and more broadly. We survey relevant work from both a theoretical perspective and an application perspective. From the theoretical perspective, we put an emphasis on useful methods from two research areas: machine learning, and logic-based knowledge representation. We also review their combinations in view of movement analytics, and we discuss promising areas for future development and application. Furthermore, we touch on constraint optimization. From an application perspective, we review applications of these methods to movement analytics in a general sense and across various industries. We also describe currently available commercial off-the-shelf products for tracking in manufacturing, and we overview main concepts of digital twins and their applications

    Developing a simulator for the Greek electricity market

    Get PDF
    Following the liberalization of the Greek electricity market, the Greek Regulatory Authority for Energy (RAE) undertook the design and implementation of a simulator for the wholesale market and its interactions with the Natural Gas Transportation System. The simulator consists of several interacting modules representing all key market operations and dynamics including (i) day-ahead scheduling based on bids of market participants, (ii) natural gas system constraints, (iii) unplanned variability of loads and available capacity driven either by uncertain stochastic outcomes or deliberate participant schedule deviations, (iv) real time dispatch, and (v) financial settlement of day ahead and real time schedule differences. The modules are integrated into one software package capable of simulating all market dynamics, deliberate or probabilistic, and their interactions across all relevant time scales. The intended use of the simulator is to elaborate on and allow RAE to investigate the impact of participant decision strategies on market outcomes. The ultimate purpose is to evaluate the effectiveness of Market Rules, whether existing or contemplated, in providing incentives for competitive behaviour and in discouraging gaming and market manipulation. This paper describes the development of the simulator relative to the current Greek Electricity Market Design and key contemplated revisions.simulation; regulatory policy; electricity markets; market design;

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Vertical transportation in buildings

    Get PDF
    Nowadays, the building industry and its associated technologies are experiencing a period of rapid growth, which requires an equivalent growth regarding technologies in the field of vertical transportation. Therefore, the installation of synchronised elevator groups in modern buildings is a common practice in order to govern the dispatching, allocation and movement of the cars shaping the group. So, elevator control and management has become a major field of application for Artificial Intelligence approaches. Methodologies such as fuzzy logic, artificial neural networks, genetic algorithms, ant colonies, or multiagent systems are being successfully proposed in the scientific literature, and are being adopted by the leading elevator companies as elements that differentiate them from their competitors. In this sense, the most relevant companies are adopting strategies based on the protection of their discoveries and inventions as registered patents in different countries throughout the world. This paper presents a comprehensive state of the art of the most relevant recent patents on computer science applied to vertical transportationConsejerĂ­a de InnovaciĂłn, Ciencia y Empresa, Junta de AndalucĂ­a P07-TEP-02832, Spain

    An investigation of computer based tools for mathematical programming modelling

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and was awarded by Brunel University.Science and Engineering Research Counci

    Long-term power system capacity expansion planning considering reliability and economic criteria

    Get PDF
    Before the deregulation of the electric industry, a vertically integrated utility made planning decisions for both the generation system and the transmission system according to reliability criteria. The deregulation of the electric industry has resulted in an unbundling of the long-term planning function for generation and transmission systems. In the deregulated world, transmission planning is different from that in the regulated environment. In this study, we present a market-based transmission expansion planning model and compare it with a traditional reliability-based transmission planning model. Reliability-based transmission planning tries to install new lines at minimal cost while fulfilling system reliability criteria. Market-based transmission planning, on the other hand, seeks investment opportunities so that network expansions can generate more economic benefits than the costs. Benders decomposition technique is employed in both methods, and their master problems and slave problems are compared, respectively. The scalability of the market-based transmission planning algorithm is also discussed. Various uncertainties occur in the planning process. Uncertainties appearing in the planning process are analyzed systematically and classified into random and non-random uncertainties. Monte Carlo simulation method is applied to simulate random uncertainties, while robustness testing method is employed to incorporate non-random uncertainties. Most planning optimization tools optimize generation expansion plans under an assumed transmission expansion plan, or they optimize transmission expansion plans under an assumed generation expansion plan. In practice, engineers typically find optimal transmission expansion plans for various generation expansion futures, often iterating between generation planning and transmission planning results, settling on those transmission expansion plans which are needed under most or all of the generation expansion futures. Inadequately accounting for the interdependency between the two planning processes may result in suboptimal investment decisions and lost economic benefits. In this article, the interactions between large-scale wind integration and transmission system planning are analyzed, and a new computational procedure of system expansion planning that coordinates generation and transmission investment is proposed

    Simulation and optimization of a multi-agent system on physical internet enabled interconnected urban logistics.

    Get PDF
    An urban logistics system is composed of multiple agents, e.g., shippers, carriers, and distribution centers, etc., and multi-modal networks. The structure of Physical Internet (PI) transportation network is different from current logistics practices, and simulation can effectively model a series of PI-approach scenarios. In addition to the baseline model, three more scenarios are enacted based on different characteristics: shared trucks, shared hubs, and shared flows with other less-than-truckload shipments passing through the urban area. Five performance measures, i.e., truck distance per container, mean truck time per container, lead time, CO2 emissions, and transport mean fill rate, are included in the proposed procedures using real data in an urban logistics case. The results show that PI enables a significant improvement of urban transportation efficiency and sustainability. Specifically, truck time per container reduces 26 percent from that of the Private Direct scenario. A 42 percent reduction of CO2 emissions is made from the current logistics practice. The fill rate of truckload is increased by almost 33 percent, whereas the relevant longer distance per container and the lead time has been increased by an acceptable range. Next, the dissertation applies an auction mechanism in the PI network. Within the auction-based transportation planning approach, a model is developed to match the requests and the transport services in transport marketplaces and maximize the carriers’ revenue. In such transportation planning under the protocol of PI, it is a critical system design problem for decision makers to understand how various parameters through interactions affect this multi-agent system. This study provides a comprehensive three-layer structure model, i.e. agent-based simulation, auction mechanism, and optimization via simulation. In term of simulation, a multi-agent model simulates a complex PI transportation network in the context of sharing economy. Then, an auction mechanism structure is developed to demonstrate a transport selection scheme. With regard of an optimization via simulation approach and sensitivity analysis, it has been provided with insights on effects of combination of decision variables (i.e. truck number and truck capacity) and parameters settings, where results can be drawn by using a case study in an urban freight transportation network. In the end, conclusions and discussions of the studies have been summarized. Additionally, some relevant areas are required for further elaborate research, e.g., operational research on airport gate assignment problems and the simulation modelling of air cargo transportation networks. Due to the complexity of integration with models, I relegate those for future independent research

    Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation

    Get PDF
    Autonomous guided vehicles (AGVs) are driverless material handling systems used for transportation of pallets and line side supply of materials to provide flexibility and agility in shop-floor logistics. Scheduling of shop-floor logistics in such systems is a challenging task due to their complex nature associated with the multiple part types and alternate material transfer routings. This paper presents a decision support system capable of supporting shop-floor decision-making activities during the event of manufacturing disruptions by automatically adjusting both AGV and machine schedules in Flexible Manufacturing Systems (FMSs). The proposed system uses discrete event simulation (DES) models enhanced by the Internet-of-Things (IoT) enabled digital integration and employs a nonlinear mixed integer programming Genetic Algorithm (GA) to find near-optimal production schedules prioritising the just-in-time (JIT) material delivery performance and energy efficiency of the material transportation. The performance of the proposed system is tested on the Integrated Manufacturing and Logistics (IML) demonstrator at WMG, University of Warwick. The results showed that the developed system can find the near-optimal solutions for production schedules subjected to production anomalies in a negligible time, thereby supporting shop-floor decision-making activities effectively and rapidly
    • …
    corecore